Compositional Sculpting of Iterative Generative Processes
            
            , Sebastiaan De Peuter, Ge Yang, Vikas Garg, Samuel Kaski, and Tommi Jaakkola
            
          
          
NeurIPS 2023: Neural Information Processing Systems
Timur Garipov
email: <firstname>@csail.mit.edu
I am a researcher at OpenAI.
I received my PhD in Computer Science at MIT EECS & MIT CSAIL, advised by professor Tommi Jaakkola.
My research is focused on probabilistic machine learning and deep learning. I am interested in LLM reasoning, generative models, empirical approaches to understanding training, robustness, and generalization of deep neural networks.
I received a BSc and MSc in Applied Mathematics and Computer Science from the Lomonosov Moscow State University, where I worked in Bayesian Methods Research Group supervised by Dmitry Vetrov.
In the summer of 2021, I completed a research internship at Google Brain, working with Chiyuan Zhang. In the summer of 2023, I completed an internship at Cruise AI Research team supervised by David Hayden.
Google Scholar / Twitter / Github
News: I defended my PhD thesis "Guiding Deep Probabilistic Models".
Thesis (PDF | MIT libraries) / Defense Slides
              
                      
          
            Compositional Sculpting of Iterative Generative Processes
            
            , Sebastiaan De Peuter, Ge Yang, Vikas Garg, Samuel Kaski, and Tommi Jaakkola
            
          
          
NeurIPS 2023: Neural Information Processing Systems
                      
          
            Adversarial Support Alignment
            
            Shangyuan Tong, , Yang Zhang, Shiyu Chang, and Tommi Jaakkola
            
          
          
        
            ICLR 2022: International Conference on Learning Representations            
            
              
               Spotlight Presentation 
            
          
                      
          
            Subspace inference for Bayesian deep learning
            
            Pavel Izmailov, Wesley J. Maddox, Polina Kirichenko, , Dmitry Vetrov, and Andrew Gordon Wilson
            
          
          
UAI 2019: Uncertainty in Artificial Intelligence
                      
          
            A Simple Baseline for Bayesian Uncertainty in Deep Learning
            
            Wesley J. Maddox, , Pavel Izmailov, Dmitry Vetrov, and Andrew Gordon Wilson
            
          
          
NeurIPS 2019: Neural Information Processing Systems
                      
          
            Averaging Weights Leads to Wider Optima and Better Generalization
            
            Pavel Izmailov, Dmitrii Podoprikhin, , Dmitry Vetrov, and Andrew Gordon Wilson
            
          
          
        
            UAI 2018: Uncertainty in Artificial Intelligence            
            
              
               Oral Presentation 
            
          
                      
          
            Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs
            
            , Pavel Izmailov, Dmitrii Podoprikhin, Dmitry Vetrov, and Andrew Gordon Wilson
            
          
          
        
            NeurIPS 2018: Neural Information Processing Systems            
            
              
               Spotlight Presentation 
            
          
                      
          
            The Benefits of Pairwise Discriminators for Adversarial Training
            
            Shangyuan Tong, , and Tommi Jaakkola
            
          
          
Preprint 2020
                      
          
            Subspace Inference for Bayesian Deep Learning
            
            Pavel Izmailov, Wesley  J. Maddox, Polina Kirichenko, , Dmitry Vetrov, and Andrew Gordon Wilson
            
          
          
        
            ICML Workshop 2019: Uncertainty & Robustness in Deep Learning            
            
              
               Oral Presentation 
            
          
                      
          
            Ultimate tensorization: compressing convolutional and FC layers alike
            
            , Dmitrii Podoprikhin, Alexander Novikov, and Dmitry Vetrov
            
          
          
NIPS Workshop 2016
                      
          
            Contact-Aware Lyapunov Controller Design via Alternating Optimization
            
            Richard Li and 
            
          
          
        
            Class project MIT 6.832 (now 6.8210): Underactuated Robotics (Spring 2022)            
            
              
               Instructor: Russ Tedrake 
            
          
                      
          
            Robotic Arm Weightlifting via Trajectory Optimization
            
            
            
          
          
        
            Class project MIT 6.843 (now 6.4212): Robotic Manipulation (Fall 2021)            
            
              
               Instructor: Russ Tedrake 
            
          
                      
          
            Implementation of Algorithms for Construction of Voronoi Diagram
            
            
            
          
          
        
            Class project MIT 6.850 (now 6.5320): Geometric Computing (Spring 2020)            
            
              
               Instructor: Piotr Indyk 
            
          
            Fast Uncertainty Estimates and Bayesian Model Averaging of DNNs
            
            Wesley J. Maddox, , Pavel Izmailov, and Andrew Gordon Wilson
            
          
          
        
            UAI Workshop 2018: Uncertainty in Deep Learning            
            
              
               Oral Presentation 
            
          
            Improving Stability in Deep Reinforcement Learning with Weight Averaging
            
            Evgenii Nikishin, Pavel Izmailov, Ben Athiwaratkun, Dmitrii Podoprikhin, , Pavel Shvechikov, Dmitry Vetrov, and Andrew Gordon Wilson
            
          
          
UAI Workshop 2018: Uncertainty in Deep Learning
            Bayesian incremental learning for deep neural networks
            
            Max Kochurov, , Dmitry Podoprikhin, Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov
            
          
          
ICLR Workshop 2018