
Guiding Deep Probabilistic Models
by

Timur Garipov
B.S., Lomonosov Moscow State University (2017)
M.S., Lomonosov Moscow State University (2019)

Submitted to the Department of Electrical Engineering and Computer Science in
Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2024

© 2024 Timur Garipov. All rights reserved.
The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free

license to exercise any and all rights under copyright, including to reproduce,
preserve, distribute and publicly display copies of the thesis, or release the thesis

under an open-access license.

Authored By: Timur Garipov
Department of Electrical Engineering and Computer Science
July 15, 2024

Certified By: Tommi S. Jaakkola
Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted By: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

Guiding Deep Probabilistic Models
by

Timur Garipov

Submitted to the Department of Electrical Engineering and Computer Science
on July 15, 2024, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Deep probabilistic models utilize deep neural networks to learn probability distribu-
tions in high-dimensional data spaces. Learning and inference in these models are
complicated due to the difficulty of direct evaluation of the differences between the
model distribution and the target. This thesis addresses this challenge and devel-
ops novel algorithms for learning and inference based on the guidance of complex
parameterized distributions towards desired configurations via signals from auxiliary
discriminative models.

In the first part of the thesis, we develop novel stable training objectives for
Generative Adversarial Networks (GANs). We show that under standard unary-
discriminator objectives, most of the valid solutions, where the learned distribution
is aligned with the target, are unstable. We propose training objectives based on
pairwise discriminators that provably preserve distribution alignment and demonstrate
improved training stability in image generation tasks.

In the second part of the thesis, we introduce distribution support alignment as an
alternative to the distribution alignment objective and develop a learning algorithm
that guides distributions towards support alignment. We demonstrate the effectiveness
of our approach in unsupervised domain adaptation under label distribution shift.
Recent works have shown that under cross-domain label distribution shift, optimizing
for distribution alignment is excessively restrictive and causes performance degradation.
Our algorithm, which is based on support alignment, alleviates this issue.

In the third part of the thesis, we develop a novel approach to compositional
generation in iterative generative processes: diffusion models and Generative Flow
Networks (GFlowNets). Motivated by the growing prominence of generative models
pre-trained at scale and the high training costs, we propose composition operations
and guidance-based sampling algorithms that enable the combination of multiple
pre-trained iterative generative processes. We offer empirical results on image and
molecular generation tasks.

1

2

Acknowledgments

I am deeply grateful to many people in my life, far more than I can list here.

I am very fortunate to have received my PhD training in Tommi Jaakkola’s research

group at MIT. I am grateful to Tommi for his insight, guidance, unconditional support,

and encouragement to seek a broader perspective and think creatively. I sincerely

appreciate the chance to pursue my interests while being reassured by Tommi’s belief

in me, even when I am facing doubts or challenges in my research.

I am profoundly grateful l to my undergraduate research advisor, Dmitry Vetrov.

Dmitry taught me the fundamentals of probabilistic machine learning, and his enthu-

siasm got me excited about machine learning research. I made my first steps as a

researcher working in the Bayesian Methods Research Group, supervised by Dmitry. I

am also very grateful to Andrew Gordon Wilson, whose collaboration and support

during my Master’s program led to the publication of my first conference papers.

I was incredibly lucky to work with many amazing colleagues during my PhD. I

would like to especially thank Shangyuan Tong, Ge Yang, Sebastiaan De Peuter, Abhi

Gupta, Vikas Garg, Samuel Kaski, Yang Zhang, Shiyu Chang, Semyon Savkin, and

Egor Lifar, who have been amazing collaborators. I learned a lot from each of you.

I am also very grateful to my industry internship mentors and friends, who made a

huge impact on my research interests and career: Chiyuan Zhang, Mike Mozer, Ekin

Dogus Cubuk, David Hayden, Zhao Chen, and Yuning Chai. I am very grateful to

my thesis committee members, Samuel Kaski and Phillip Isola, for their invaluable

guidance and insightful feedback that helped shape my work. I want to thank Russ

Tedrake for the amazing robotics classes that were enlightening and inspiring and

fueled my interest in the field. I also want to thank my friend Richard Li for being a

fantastic collaborator on our class projects and for memorable research discussions.

To my wonderful wife, Tatiana, your boundless love and support have made this

journey possible. Your faith in me, even during the toughest times, has been my

guiding light. I am eternally grateful for your presence in my life and for sharing this

journey with me.

3

I would like to express my deepest gratitude to my parents, Ismagil and Galina,

for their unwavering support, love, and encouragement throughout my studies. Your

sacrifices and belief in me have been the foundation of my success. I am forever

grateful. I am sincerely thankful to my brothers Emil and Roman for their consistent

support and encouragement. Your companionship and belief in me have played a

significant role in helping me achieve this milestone. With deep appreciation, I thank

my grandparents for instilling in me the love for learning and perseverance.

I want to especially thank my closest friends, Pavel Izmailov, Dmitrii Podoprikhin,

and Evgenii Nikishin, who have also been my collaborators since our undergraduate

days and played a major role in forming my research interests. Your encouragement to

pursue a PhD and constant support throughout this journey have been instrumental

in my success. I am truly fortunate to have you by my side.

I am also grateful to my cousin Dina Garipova and my friends Pavel Kovalenko,

Victoria Snorovikhina, Tamara Makoveeva, Eleonora Kiziv, Olga Tsvetkova, Alexei

Fedoret, Anastasia Sobolina, Sergey Kolchenko, Anna Talyzina, Alina Ringaci, Evgenii

Kegeles, Nicole Bens, Iryna Prekrasna, Anatoly Prekrasnyy, Artur Avkhadiev, Eldar

Shakirov, Victoria Shakirova, Daniil Klyuev, George Stepaniants, Alexander Avdoshkin,

David Saykin, Samat Davletshin, Gerardo Flores, Zoe De Simone, Benson Chen, Xiang

Fu, Yilun Xu, Abhi Gupta, Ge Yang, Hannes Stärk, Felix Faltings, Jason Yim, Peter

Holderrieth, Amit Schechter, Chenyu Wang, and many others. I cannot imagine

completing my PhD without your support. I am sincerely grateful to Trevor Stricker

for our guitar sessions and heavy metal jams, and to the MIT Heavy Metal 101 IAP

class for connecting heavy metal fans. I want to thank the EECS graduate office,

graduate officer Leslie Kolodziejski, and Jaakkola lab’s administrative assistant, Teresa

Cataldo, for their exceptional support and dedication to student success.

Finally, I am thankful to so many of my teachers, especially Dmitry Kropotov,

Elena Andreeva, Andrei Shestimerov, Sergey Mikhailin, Kamil Hadiev, Ravil Hadiev,

Liudmila Bamburkina, Alexei Zabolotskiy, Natalia Zadorina, and teachers at Russian

IOI Camp and Summer Informatics School.

4

Epigraph

Heaven and Hell

Sing me a song, you’re a singer
Do me a wrong, you’re a bringer of evil
The Devil is never a maker
The less that you give, you’re a taker
So it’s on and on and on,

it’s Heaven and Hell, oh well

The lover of life’s not a sinner
The ending is just a beginner
The closer you get to the meaning
The sooner you’ll know that you’re dreaming
So it’s on and on and on,

oh it’s on and on and on
It goes on and on and on, Heaven and Hell
I can tell, fool, fool!

Well if it seems to be real, it’s illusion
For every moment of truth,

there’s confusion in life
Love can be seen as the answer,

but nobody bleeds for the dancer
And it’s on and on, on and on and on ...

They say that life’s a carousel
Spinning fast, you’ve got to ride it well
The world is full of Kings and Queens
Who blind your eyes and steal your dreams
It’s Heaven and Hell, oh well
And they’ll tell you black is really white
The moon is just the sun at night
And when you walk in golden halls
You get to keep the gold that falls
It’s Heaven and Hell, oh no!
Fool, fool!
You’ve got to bleed for the dancer!
Fool, fool!
Look for the answer!
Fool, fool, fool!

Lyrics of “Heaven and Hell” from the album

“Heaven and Hell” (1980) by Black Sabbath.

Lyrics by Ronnie James Dio (1942 – 2010).

5

6

Contents

Abstract 1

Acknowledgments 3

Epigraph 5

List of Figures 13

List of Tables 15

List of Algorithms 17

1 Introduction 19

1.1 Motivation, Research Questions, Contributions 21

2 Background: Deep Probabilistic Models 27

2.1 Probabilistic Machine Learning . 27

2.1.1 Training (Learning from Data) 28

2.1.2 Inference . 29

2.1.3 A Note on Probabilistic and Causal Models 31

2.2 Deep Probabilistic Models . 31

2.2.1 Deep Probabilistic Models: Parameterization 33

Deep Discriminative Models (Classifiers / Regressors) 33

Deep Autoregressive Models 33

Variational Autoencoders (VAEs) 34

7

Genrative Adversarial Networks (GANs) 35

Energy-based Models (EBMs) 35

Generative Flow Networks (GFlowNets) 36

Normalizing Flows . 38

Continuous Normalizing Flows (CNFs) 39

Diffusion Models . 41

2.2.2 Deep Probabilistic Models: Training 44

Large-Scale Training and Stochastic Gradient-Based Optimization 45

Maximum Likelihood Estimation 48

Divergence Minimization . 49

Exact Models: Direct Maximum-Likelihood Estimation 50

VAEs: Variational Inference and Evidence Lower Bound . . . 50

GANs: Variational Form of Divergences and Game-Theoretic

Learning Algorithms 52

EBMs: Maximum Likelihood 58

EMBs and Diffusion Models: Denoising Score Matching 59

CNFs: Flow Matching . 61

GFlowNets: Trajectory Balance 64

2.2.3 Deep Probabilistic Models: Inference 68

3 Pairwise-Discriminator Objectives for Generative Adversarial Net-

works 75

3.1 Introduction . 75

3.2 Related Work . 78

3.3 Background . 80

3.4 How To Preserve The Alignment? . 82

3.5 PiarGAN . 83

3.5.1 Divergence Minimization . 84

3.5.2 Local Convergence Of Generator 85

3.5.3 Sufficient Discriminators . 87

8

3.5.4 Minimally Sufficient Discriminators 87

3.5.5 Towards Global Convergence of PairGAN 91

3.5.6 Aligning Multiple Distributions 91

3.6 Connections To Other Pairwise Objectives 93

3.7 Experiments . 95

3.7.1 Fixed Generator Matching . 96

3.7.2 Real World Datasets . 97

4 Adversarial Support Alignment 101

4.1 Introduction . 101

4.2 SSD divergence and support alignment 103

4.2.1 Difference between supports 103

4.2.2 Support Alignment in One-Dimensional Space 104

4.3 Adversarial Support Alignment . 107

4.4 Spectrum of Notions of Alignment . 109

4.4.1 Theoretical connections . 109

4.4.2 Algorithmic connections . 111

4.5 Related Work . 114

4.6 Experiments . 115

5 Compositional Sculpting of Iterative Generative Processes 125

5.1 Introduction . 125

5.2 Background . 127

5.2.1 Generative Flow Networks (GFlowNets) 127

5.2.2 Diffusion Models . 129

5.2.3 Classifier Guidance in Diffusion Models 130

5.2.4 “Energy” Operations . 130

5.3 Related Work . 131

5.4 Compositional Sculpting of Generative Models 137

5.4.1 Binary Composition Operations 137

5.4.2 Compositional Sculpting: General Approach 142

9

5.5 Compositional Sculpting of Iterative Generative Processes 144

5.5.1 Composition of GFlowNets . 144

5.5.2 Classifier Training (GFlowNets) 146

5.5.3 Composition of Diffusion Models 149

5.5.4 Classifier Training (Diffusion Models) 150

5.6 Experiments . 152

5.6.1 2D Distributions via GFlowNet 152

5.6.2 Molecule Generation via GFlowNet 154

5.6.3 Colored MNIST Generation via Diffusion Models 157

5.6.4 Classifier Learning Curves and Training Time 159

6 Discussion 163

Bibliography 167

Appendices 203

Appendix A Pairwise-Discriminator Objectives for Generative Adver-

sarial Networks 205

A.1 Proof of Proposition 3.5.1 . 205

A.2 Proof of Proposition 3.5.2 . 207

A.3 Hessian of the Generator Loss . 208

A.4 Proof of Proposition 3.5.3 . 209

A.5 Poof of Proposition 3.5.6 . 211

A.6 Proof of Proposition 3.5.7 . 213

A.7 Toy Example Details . 214

A.7.1 DiracGAN & DiracPairGAN 214

A.7.2 Multiple Distributions . 217

A.8 Experiment Details . 220

A.8.1 Fixed Generator Matching Experiment 220

A.8.2 Real World Datasets Experiment 222

A.8.3 Examples . 224

10

Appendix B Adversarial Support Alignment 229

B.1 Proofs of the Theoretical Results . 229

B.1.1 Proof of Proposition 4.2.1 . 229

B.1.2 Assumption and Proof of Theorem 4.2.2 230

Comments on Assumption (4.3) 230

Proof of Theorem 4.2.2 . 230

B.1.3 Proof of Proposition 4.2.4 . 232

B.1.4 Proof of Proposition 4.4.1 . 233

B.1.5 Proof of Proposition 4.4.2 . 235

B.1.6 Proof of Proposition 4.4.4 . 236

B.1.7 Proof of Proposition 4.4.3 . 237

B.2 Discussion of “Soft” and “Hard” Assignments with 1D Discrete Distri-

butions . 240

B.3 Experiment Details . 241

B.3.1 USPS to MNIST experiment specifications 241

B.3.2 STL to CIFAR experiment specifications 242

B.3.3 VisDA-17 experiment specifications 243

Appendix C Compositional Sculpting of Iterative Generative Processes245

C.1 Classifier Guidance for Parameterized Operations 245

C.2 Proof of Proposition 5.4.1 . 247

C.3 Proofs and Derivations . 249

C.3.1 Proof of Proposition 5.5.1 . 249

C.3.2 Proof of Proposition 5.5.2 . 251

C.3.3 Proof of Theorem 5.5.3 . 254

C.3.4 Detailed Derivation of Classifier Training Objective 254

C.3.5 Assumptions and Proof of Proposition 5.5.4 255

C.3.6 Proof of Theorem 5.5.5 . 259

C.4 Implementation Details . 260

C.4.1 Classifier Guidance in GFlowNets 260

11

C.5 Experiment details . 261

C.5.1 2D Distributions with GFlowNets 261

C.5.2 Molecule Generation . 263

C.5.3 Colored MNIST Generation via Diffusion Models 264

C.6 Additional Results . 266

C.6.1 Analysis of Sample Diversity of Base GFlowNets in Molecule

Generation Domain . 266

C.6.2 Binary Operations for MNIST Digit Generation via Diffusion

Models . 266

C.6.3 MNIST Subset Generation via Diffusion Models 268

C.6.4 Chaining: Sequential Composition of Multiple Distributions . 270

12

List of Figures

3-1 Demonstration of adversarial training dynamics on toy examples . . . 76

3-2 Training curves for a DCGAN generator re-parameterized for fixed

generator matching experiment . 79

3-3 Visualization of convergence points 86

3-4 Demonstration of dynamics of multiple distribution alignment on a toy

example . 92

3-5 FID training curves on CIFAR-10 for DCGAN models without batch

normalization layers . 98

3-6 FID training curves on CAT dataset for different resolutions 98

4-1 Illustration of differences between the final configurations of distribution

alignment and support alignment procedures 103

4-2 Visualization of example distributions for Proposition 4.2.5 106

4-3 Visual illustration of the statement of Proposition 4.4.4 112

4-4 Visualization of learned 2D embeddings on 3-class USPS→MNIST with

label distribution shift . 115

4-5 Evaluation of history size effect for ASA on MNIST→USPS with the

label distribution shift . 119

4-6 Kernel density estimates of distributions of discriminator outputs 𝑔𝜓♯𝑝𝜃𝑍 ,

𝑔𝜓♯𝑞
𝜃
𝑍 . 121

5-1 Demonstration of composition operations on 2D Gaussian distributions 128

5-2 Compositional sculpting and energy operations applied to 1D Gaussian

distributions . 141

13

5-3 Composed GFlowNets on 32× 32 grid domain. 152

5-4 Reward distributions in the molecular generation domain 153

5-5 2D t-SNE embeddings of three base GFlowNet distributions in molecule

generation domain . 156

5-6 Composed diffusion models on colored MNIST 158

5-7 Training curves of the classifier ̃︀𝑄𝜑(𝑦1, 𝑦2|·) in GFlowNet 2D grid domain160

5-8 Training curves of the classifier ̃︀𝑄𝜑(𝑦1, 𝑦2|·) in GFlowNet molecule

generation domain . 160

5-9 Training curves of the classifier ̃︀𝑄𝜑(𝑦1, 𝑦2|·) in diffusion MNIST image

generation domain . 161

A-1 Training curves for DCGAN generator re-parameterized with a single

parameter . 221

A-2 Examples of 64× 64 CAT images generated with PairGAN 225

A-3 Examples of 128× 128 CAT images generated with PairGAN 226

A-4 Examples of 256× 256 CAT images generated with PairGAN 227

C-1 Diffusion model composition on colored MNIST 268

C-2 Diffusion model composition on MNIST 269

C-3 Composing even digits and multiples of three on Colored MNIST . . 270

C-4 Composing odd digits and multiples of three on Colored MNIST . . . 270

C-5 Chaining Binary Operations on Colored MNIST 272

14

List of Tables

3.1 Comparison of GAN FID curve statistics on CIFAR-10 95

3.2 Compariasion of FID on CIFAR-10 without batch normalization in

discriminator or both discriminator and generator 97

3.3 Comparison of GAN FID curve statistics on CAT dataset 99

4.1 Average and minimum class accuracy (%) on USPS→MNIST with

different levels of shifts in label distributions 117

4.2 Average and minimum class accuracy (%) on STL→CIFAR with differ-

ent levels of shifts in label distributions 118

4.3 Average and minimum class accuracy (%) on VisDA17 with different

levels of shifts in label distributions 118

4.4 Analysis of effect history size parameter for ASA on USPS→MNIST

with class label distribution shift . 120

4.5 Analysis of effect history size parameter for ASA on USPS→MNIST

with class label distribution shift and 2D feature extractor 121

4.6 Results of ablation experiments of the effect of auxiliary conditional

entropy loss on STL→CIFAR data 122

4.7 Results of comparison of ASA with DANN and VADA across different

values of the alignment loss weight 𝜆align on STL→CIFAR data 123

4.8 Results of comparison with optimal transport based methods on STL→CIFAR

data . 124

5.1 Reward distributions of composite GFlowNets in molecule generation

domain . 156

15

5.2 Estimated pairwise earthmover’s distances between distributions shown

in Table 5.1. 157

5.3 Summary of base GFlowNet and classifier training time in molecule

generation domain . 161

5.4 Summary of base diffusion and classifier training time in MNIST image

generation domain . 161

A.1 Learning rates for discriminator (𝜂D) and 𝛼 (𝜂𝛼) for different GAN models221

C.1 Average pairwise similarity [16] of molecules generated by GFlowNets

trained on ’SEH’, ’SA’, ’QED’ rewards at different values of 𝛽 267

C.2 Number of Tanimoto-separated modes found above reward threshold 267

16

List of Algorithms

1 Adversarial Support Alignment (ASA) 109

2 Compositional Sculpting: classifier training 147

17

18

Chapter 1

Introduction

Artificial intelligence systems based on deep probabilistic models [174, 175] have

powered advances across applied and scientific domains, including image synthesis [21],

text generation [184], robotic manipulation [41], and drug discovery [257]. The ability

of deep probabilistic models to capture complex statistical dependencies in high-

dimensional and structured spaces and generate realistic samples has made them

indispensable tools in modern machine learning.

Traditional training and inference tasks in machine learning involve well-defined

objectives and direct evaluation metrics, such as optimization with explicitly specified

training signals on large datasets typically collected, labeled, or produced by people.

These tasks typically benefit from clear goals and a relatively predictable training

process. In contrast, frontier problems — such as cross-domain adaptation, multi-

objective design, generation of complex structured objects, solving multistep reasoning

tasks, generation of creative content, human-computer interaction, and scientific

innovation — present significant challenges. Direct evaluation of model outputs in

these contexts is often costly or impossible due to the complex and dynamic nature of

the tasks. Both model training and evaluation with explicitly specified signals have

limited scaling potential.

These challenges motivate a modular approach that introduces learnable helper

models that are trained with auxiliary objectives and then used to guide the primary

(possibly large and pre-trained) model. Automatically learned signals can help guide

19

the learning process in problems where direct supervision signals are scarce or ex-

pensive, facilitate adaption to drifting data distributions, manage trade-offs between

multiple objectives, steer multi-step inference processes, and provide a basis for model

evaluation.

A prominent trend in recent years is the use of large-scale models pre-trained

on extensive datasets [27]. Models such as GPTs [33, 184, 202], CLIP [203], DINO

[185], and Stable Diffusion [68] are trained on massive amounts of data and discover

broadly generalizable representations. These models can then be fine-tuned or adapted

for downstream tasks, leveraging the knowledge distilled in the model to achieve

task-specific goals. This approach of large-scale pre-training followed by adaptation

has demonstrated immense capacity to improve the performance and efficiency of

machine learning systems, as it reduces the need for task-specific training from scratch

and facilitates rapid deployment.

As progress on many problems in engineering and science benefits from multidisci-

plinary collaboration, complex artificial intelligence systems will inevitably involve

cooperation among multiple models with different capabilities and expertise. Building

such model consortia necessitates learning helper models that serve as interfaces for

effective interaction and coordination among the models.

Development of structured models involving multiple components and governed by

automatically learned signals introduces a range of methodological challenges. For

example,

• When one model relies on feedback from another model and the states of both

models are evolving, it is crucial to ensure stable interaction throughout the

training. Training dynamics instability hinders convergence and reduces the

effectiveness of the learning process. Understanding and managing the interaction

between the primary model and the feedback model is necessary to ensure reliable

and consistent training outcomes.

• The nature of a training signal and underlying assumptions have a significant

effect on the obtained solution. In particular, directing models for adaptation

20

to new domains under multi-faceted distribution shifts and imbalances requires

taking into account the properties of the training signal and associated optimal

solutions. Developing new measures and learning signals that can direct models

effectively under these conditions is essential. These measures must be flexible

enough to ensure that models can generalize across different domains and

maintain high performance.

• Large pre-trained generative models are the results of extensive training on vast

datasets and, therefore, require novel techniques for effective adaptation to new

tasks. Combination of multiple models is a powerful approach for model reuse

and adaptation. Extending model capacity to represent composite probability

distributions requires the development of informative signals for the coordination

of multiple generative processes.

This thesis addresses the outlined challenges and develops novel methods for

training and inference in deep probabilistic models. At the core of these methods are

improved techniques for guiding complex parameterized distributions towards desired

configurations via signals from auxiliary models. Our contributions are focused on

method development, are agnostic to neural network architectures, and can be applied

to a wide range of application domains.

This thesis is organized as follows. Section 1.1 summarizes the motivation, the

research questions, and the contributions of the thesis on a technical level. Chapter 2

covers background on deep probabilistic models. Chapters 3, 4, and 5 present the

contributions of the thesis. Chapter 6 provides a discussion of the contributions and

their implications, and concludes the thesis.

1.1 Motivation, Research Questions, Contributions

Despite advances in deep probabilistic models (see Chapter 2), learning and inference

with probabilistic models in high-dimensional spaces remain highly complicated.

Several specific challenges underpin these complexities:

21

• Complexity of Specifying Optimality Criteria. As learning problems

become more complex, specifying the notion of optimality and training objec-

tives excplitly becomes increasingly impractical. Explicitly specified training

signals are often inadequate or excessively restrictive for capturing the nuanced

requirements of complex models. Greater flexibility in optimization criteria is

required to adapt to the specific needs of the model and the task. As learning

high-dimensional probability distributions is an inherently ill-defined problem,

extending the training criteria beyond existing objectives is essential for explor-

ing inductive biases and implicit training dynamics regularization strategies for

learning complex probability distributions.

• Infeasibility of Direct Likelihood Evaluation and Divergence Computa-

tion. In many models, the evaluation of the likelihood for maximum-likelihood

estimation or divergence estimation is challenging or infeasible. Consequently,

the distance to the target distribution cannot be directly assessed, necessitating

alternative approaches.

Objectives such as optimal transport distances measure the differences between

distributions at the population level. These population-level objectives require

significant computational resources and are not well-suited for deep neural

networks that rely on stochastic estimators to enable more efficient algorithms

for large networks and large datasets in high-dimensional spaces.

• Insufficiently Informative Objectives from Distance-Based and Likelihood-

Based Signals. Many training objectives are based on model likelihood or

distances between data points. In high-dimensional spaces, such objectives often

lack informativeness and fail to capture the true structure of the data distribution.

Thus, they do not provide strong learning signals. This insufficiency complicates

training dynamics and hinders the effectiveness of the learning process.

• Realization of Complex Distributions in Controlled Generation Tasks.

In many inference and controlled generation tasks, even if a user can explicitly

22

describe the properties of the desired distribution, directly realizing such distri-

butions is often not possible since DPM families impose specific structure on

the generative process. It is challenging to prescribe control mechanisms and

sampling schemes to realize controllable inference in DPMs.

Guiding Deep Probabilistic Models. Motivated by the challenges listed above,

this thesis focuses on using auxiliary models trained on separate discriminative tasks

to guide deep probabilistic models during training and inference. The key idea of the

approach is to learn informative signals that can be used to guide a deep probabilistic

model towards the target for training or inference. This guidance approach builds

upon and expands the idea of Generative Adversarial Networks (GANs) [78]. Guidance

introduces several significant benefits:

• Flexibility in Specifying Optimality Criteria. The use of learned objectives

based on signals from auxiliary models provides enhanced flexibility. The

optimization criteria can be dynamically adapted to the current state of the deep

probabilistic model. This flexibility expands the range of optimization criteria

beyond explicitly specified objectives. Moreover, guidance with an auxiliary

model introduces additional inductive biases that influence model capacity and

training dynamics.

• Informative Signals in High-Dimensional Spaces. Through training

on samples from the distributions, auxiliary models automatically discover

informative representations of high-dimensional data. The signals derived from

these models can be used as learned metrics on the data space and as proxies for

divergences between the model and the target distribution configuration. This

approach enables models to be trained and evaluated even when direct estimates

of divergences are not tractable or are not informative.

Direct computation of population-level objectives, such as optimal transport,

is computationally expensive. In certain scenarios, estimation of distribution

differences via auxiliary models provides a practical workaround by offering

23

signals that approximate these objectives with adequate compute costs. This

approach aligns well with the stochastic optimization algorithms for deep neural

networks and makes it feasible to train complex models on large datasets.

• Guidance for Controlled Generation. One can use auxiliary models to

construct distributions with desired properties and guide the inference toward

these targets. This approach expands the tools for model composition and

control to scenarios where the direct realization of the target distribution is not

feasible.

Guidance using auxiliary discriminative models offers a powerful and flexible

framework for addressing the challenges inherent in training and inference with DPMs.

Leveraging the power of discriminative models to learn informative representations

and metrics, provide informative signals, and introduce beneficial inductive biases, this

approach enhances the capability of DPMs to learn and represent complex distributions.

This thesis explores the guidance methodology through three research questions, each

addressing specific aspects of adversarial training, joint training dynamics of the main

and auxiliary models, properties of training criteria and objectives, and guidance

for inference in structured models. The thesis is focused on principled methods

with guarantees on the optimality of target configurations, stability of solutions, and

sampling from the target distributions. The contributions span theoretical analysis,

novel practical methods, and empirical evaluations, highlighting the efficacy of using

auxiliary discriminative models to guide deep probabilistic models towards target

configurations.

Research Questions 1. Adversarial training methods typically align distributions

by solving two-player games between a generator and a discriminator. However, in

most current formulations, even if the generator aligns perfectly with data, a sub-

optimal discriminator can still drive the two apart. Absent additional regularization,

the instability can manifest itself as a never-ending game. How can we guide

a parameterized generative distribution towards the target so that the

alignment, once reached, is preserved?

24

Contributions. In Chapter 3, we introduce a family of objectives by leveraging

pairwise discriminators, and show that only the generator needs to converge. The

alignment, if achieved, would be preserved with any discriminator. We provide suf-

ficient conditions for local convergence; characterize the capacity balance between

parametric generators and discriminators; and construct examples of minimally suffi-

cient discriminators. Empirically, we illustrate the theory and the effectiveness of our

approach on synthetic examples. Moreover, we show that practical methods derived

from our approach improve training stability in image generation tasks.

Research Question 2. Adversarial distribution alignment methods found appli-

cations in domain adaption [72]. The adversarial process aims to make the learned

representations indistinguishable between domains, effectively aligning their distribu-

tions. As a result, the shared classifier can perform well on both the source and target

domains, improving the model’s ability to generalize across different data distributions.

Recent works [143, 239, 278] have shown that optimizing for distribution alignment

can be excessively restrictive under cross-domain label distribution shifts. Can we

develop an alternative notion of alignment that partially lifts distribution

alignment restrictions while enabling effective learning in unsupervised

domain adaptation scenarios? How do we guide distributions towards this

relaxed alignment configuration?

Contributions. In Chapter 4, we study the problem of aligning the supports of

distributions. Compared to the existing work on distribution alignment, support

alignment does not require the densities to be matched. We propose symmetric

support difference as a divergence measure to quantify the mismatch between supports.

We show that select discriminators (e.g. discriminator trained for Jensen–Shannon

divergence) are able to map support differences as support differences in their one-

dimensional output space. Following this result, our method aligns supports by

minimizing a symmetrized relaxed optimal transport cost in the discriminator 1D

output space via a non-zero-sum game process. We show that our approach can

25

be viewed as a limit of existing notions of alignment based on optimal transport by

increasing transportation assignment tolerance. We quantitatively evaluate the method

across domain adaptation tasks with shifts in label distributions. Our experiments

show that the proposed method is more robust against these shifts compared to other

alignment-based methods.

Research Question 3. Recently, significant advances in generative modeling have

been achieved by models based on iterative processes. Models such as diffusion models

[226, 231] and GFlowNets [16], learn a deep policy that guides a long chain of data

refinement updates. High training costs of generative models and the need to fine-tune

them for specific tasks have created a strong interest in model reuse and composition.

A key challenge in composing iterative generative processes, such as GFlowNets and

diffusion models, is that to realize the desired target distribution, all steps of the

generative process need to be coordinated, and satisfy delicate balance conditions.

How can we guide multiple iterative generation processes towards realizing

composite distributions? How can we control contributions of individual

models?

Contributions. In Chapter 5, we propose Compositional Sculpting: a general

approach for defining compositions of iterative generative processes. We introduce

a method for sampling from these compositions built on classifier guidance. We

showcase ways to accomplish compositional sculpting in both GFlowNets and diffusion

models. We highlight two binary operations — the harmonic mean (𝑝1 ⊗ 𝑝2) and

the contrast (𝑝1◑ 𝑝2) between pairs, and the generalization of these operations to

multiple component distributions. We offer empirical results on image and molecular

generation tasks.

26

Chapter 2

Background: Deep Probabilistic

Models

2.1 Probabilistic Machine Learning

The goal of machine learning as an area of computer science is to build algorithms that

can learn, i.e., acquire capabilities to make inferences (predictions) about the world,

from experience or observed data. The fundamental purpose of machine learning

models is to enable informed decision-making, with their outputs serving as inputs

for human-driven decisions or as direct decision-making mechanisms for artificial

intelligence systems engaged in real-world tasks. Real-world data and predictions

about the world are inherently noisy and involve irreducible uncertainty. Probability

theory [128] offers a principled and rigorous framework for quantifying uncertainty.

Learning involves constructing models that build representations of objects in the

world and capture the relations between different observable quantities related to

those objects. Based on the probabilistic principles, probabilistic machine learning

models [24, 174, 175] aim to learn statistical dependencies between observed variables

from data. Statistical dependencies refer to the relationships or associations between

variables where the distribution of one variable is related to the value(s) of other

variable(s). For instance, one might want to estimate the conditional probability

𝑝𝑌 |𝑋(𝑦|𝑥) of 𝑌 given 𝑋, encoding the likelihood of observing different values 𝑦 of the

27

variable 𝑌 given that the variable 𝑋 is observed to have the value 𝑥. Alternatively,

instead of focusing on the one-way dependency of 𝑌 on 𝑋, one might want to

characterize the mutual interdependency between 𝑋 and 𝑌 by estimating the joint

distribution 𝑝𝑋,𝑌 (𝑥, 𝑦), which encodes the likelihood of observing 𝑋 and 𝑌 taking

the respective values 𝑥 and 𝑦 simultaneously. The joint distribution completely

characterizes the statistical relation between variables 𝑋 and 𝑌 . The conditional

probabilities 𝑝𝑋|𝑌 and 𝑝𝑌 |𝑋 , which represent one-way dependencies, can be derived

from the joint distribution:

𝑝𝑌 |𝑋(𝑦|𝑥) =
𝑝𝑋,𝑌 (𝑥, 𝑦)

𝑝𝑋(𝑥)
, 𝑝𝑋|𝑌 (𝑥|𝑦) =

𝑝𝑋,𝑌 (𝑥, 𝑦)

𝑝𝑌 (𝑦)
, (2.1)

𝑝𝑋(𝑥) =

∫︁
𝑝𝑋,𝑌 (𝑥, 𝑦) 𝑑𝑦, 𝑝𝑌 (𝑦) =

∫︁
𝑝𝑋,𝑌 (𝑥, 𝑦) 𝑑𝑥. (2.2)

Note that the marginal distributions 𝑝𝑋(𝑥) and 𝑝𝑌 (𝑦), that encode the likelihoods of

observing 𝑋 taking the value 𝑥 in isolation and respectively 𝑌 taking the value of 𝑦

in isolation, can also be derived from the joint distribution.

Continuing with the abstract example of two variable 𝑋 and 𝑌 , we now describe

the tasks of probabilistic machine learning: learning statistical dependencies from

data and using learned models to produce inferences about the variables.

2.1.1 Training (Learning from Data)

Suppose that we can collect a number of observations 𝒟𝑛 = {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1 of variables

𝑋 and 𝑌 . We assume that these real-world observations constitute independent

and identically distributed (i.i.d.) samples from some underlying data-generating

distribution 𝑝𝐷𝑋,𝑌 (𝑥, 𝑦). In general, this distribution might be unknown and we only

observe a finite number 𝑛 of samples from this distribution.

The goal of training in probabilistic machine learning is to learn a model distribution

𝑝𝑀 so that the learned model

• explains the observed data or does not contradict the observed data;

• approximates the true data generating distribution 𝑝𝑀 ≈ 𝑝𝐷 and approaches 𝑝𝐷

28

as 𝑛 grows (𝑛→∞).

There are many ways to approach this task, and the kind of model to be learned

must be specified. It is common to distinguish between “discriminative” and “generative”

models [179]. In the example of two variables 𝑋 and 𝑌 (which in this case abstracts

away some nuance, but provides general intuition) the difference between discriminative

and generative models can be broadly understood as follows

• Discriminative Models learn the conditional probability 𝑝model
𝑌 |𝑋 (𝑦|𝑥), and thus

can be used only to evaluate the one-directional effect of 𝑋 on the distribution

of 𝑌 ;

• Generative Models learn the joint probability distribution 𝑝model
𝑋,𝑌 (𝑥, 𝑦) and

thus aim to completely characterize statistical dependencies between 𝑋 and 𝑌 .

As discussed above, the distributions 𝑝model
𝑌 |𝑋 , 𝑝model

𝑋|𝑌 , 𝑝model
𝑋 , 𝑝model

𝑌 can be derived

from the model of the joint distribution.

2.1.2 Inference

Once a probabilistic model is trained, it can be used to make statistical predictions

about the world. The goal of the inference task is to leverage the knowledge distilled

in the model during training to address various types of questions about the variables

of interest. Inference tasks include:

• Prediction. Prediction focuses on estimating the value of a variable. For

example, if the model 𝑝𝑀𝑌 |𝑋(𝑦|𝑥) is learned, one might want to know the most

likely value of 𝑌 given a new observation 𝑋 = 𝑥′. This involves finding 𝑦 =

argmax𝑦 𝑝
𝑀
𝑌 |𝑋(𝑦|𝑥′). More generally, one might compute any statistics derived

from 𝑝𝑀𝑌 |𝑋(𝑦|𝑥′) (such as mean, median, modes, . . .).

• Uncertainty Quantification and Decision Making. Having access to the

full probability distribution rather than focusing on a single prediction allows

one to quantify the uncertainty associated with the prediction. This can involve

computing confidence intervals for predictions or evaluating the entropy of

29

the predictive distribution as a measure of the model’s uncertainty. In some

applications, the goal is to make decisions based on the inferred probabilities.

This involves using the model’s predictions and uncertainty estimates to choose

actions that minimize a certain risk function.

• Probaility (Density) Evaluation. This task involves computing the prob-

ability or probability density of data points under the learned model: given a

model 𝑝𝑀𝑋,𝑌 and a query point (𝑥′, 𝑦′), evaluating the likelihood 𝑝𝑀𝑋,𝑌 (𝑥′, 𝑦′) of

the observing (𝑥′, 𝑦′) under the learned model. The probability (density) values

can be used to rank data by likelihood, find anomalies, and estimate distribu-

tion properties. Moreover, other inference tasks often involve (unnormalized)

likelihood evaluation as a subroutine.

• Sample Generation (Sampling). Sample generation involves creating new

data points that are consistent with the learned model. For generative models

that learn the joint distribution 𝑝𝑀𝑋,𝑌 , this task involves sampling new pairs (𝑥, 𝑦)

from the model distribution. Samples might be the main focus of inference (e.g.

in image generation) or might be used to achieve other goals, such as computing

Monte Carlo estimates.

• Conditional / Controllable Generation. Conditional generation focuses

on generating new data samples given information about observed quantities.

An example is generation of 𝑌 given 𝑋 = 𝑥′ using the learned conditional

distribution 𝑝𝑀𝑌 |𝑋 . Controllable generation extends this task by allowing control

over certain aspects of the generated data, based on user-defined conditions or

constraints.

• Use in Structured Probabilistic Models. The learned distribution can be

used as a component in more complex structured probabilistic models, such

as graphical models [127] or compositional models (e.g, [60, 97], and models

described in Chapter 5).

30

2.1.3 A Note on Probabilistic and Causal Models

So far, the discussion has focused on statistical dependencies. In order to make

decisions and plan in the real world, it is often important to infer causal dependencies

between variables. Causal dependencies refer to relationships where one variable

directly affects the mechanism by which another variable is realized, and performing

an intervention (manipulation) on a variable changes the data generation process (e.g.,

𝑝(𝑌 = 𝑦| do(𝑋 = 𝑥)) ̸= 𝑝(𝑌 = 𝑦|𝑋 = 𝑥)). Statistical dependencies (correlations)

only indicate that two variables are related, assuming a fixed data generation process;

causal dependencies imply a cause-and-effect relationship and encode the variation in

the data generation process under interventions on variables. Thus, causal models

are more general than probabilistic models, as causal models enable reasoning about

interventions and counterfactuals. Probabilistic models are estimated from observa-

tional data only (data collected under fixed data generation mechanisms) and cannot

capture causal relationships; therefore, such probabilistic models cannot be used to

reason about interventions and counterfactuals (without additional assumptions on the

structure of the causal model). Still, probabilistic modeling is an essential component

of causal modeling.

We make this note here because any discussion of artificial intelligence acting

in the real world would not be sound without addressing causal models and their

distinction from probabilistic models. However, further discussion of causal models is

beyond the scope of this thesis, and the remainder of the thesis will focus solely on

probabilistic models. We refer the reader to [190, 196] for a deeper review of modern

causal modeling techniques.

2.2 Deep Probabilistic Models

Learning statistical dependencies between few variables is relatively straightforward

and can often be achieved with classical learning methods [24]. For instance, estimation

of conditional probabilities can be achieved with linear models or closed-form non-

parametric models and requires a manageable amount of data and computational effort.

31

However, the situation becomes more challenging when dealing with a high number

of variables in problems such as modeling statistical dependencies between pixels in

a high-resolution image. In high-dimensional spaces, the complexity of relationships

and interactions among variables increases significantly, making it difficult to capture

these dependencies faithfuly.

The curse of dimensionality — the fact that the number of possible configurations

of the data increases exponentially with the number of dimensions — makes estimating

probability distributions from a finite number of data points in high-dimensional spaces

a fundamentally ill-posed problem. In such vast spaces, even a large dataset represents

only a sparse sampling of all possible data points. Consequently, many different

probability distributions can agree with the observed data, making it difficult to

uniquely determine the underlying distribution that generated the data. This ambiguity

and underdetermination pose significant challenges for probabilistic modeling, as it

becomes exceedingly difficult to infer accurate and reliable probability distributions

without additional assumptions or constraints. One way to approach such challenging

learning problems is to seek models with appropriate inductive biases. Inductive

biases are assumptions built into a model family and a learning algorithm (often

implicitly) that result in certain solutions being favored over others, thereby guiding

the learning process. Without suitable inductive biases, models can overfit the limited

data, capturing noise rather than meaningful patterns, or fail to generalize to unseen

data points.

Deep neural networks (DNNs) [77, 272] have proven to provide inductive biases

that are particularly suitable for modeling high-dimensional data such as images,

texts, robotic control trajectories, and molecular structures. Deep probabilistic models

(DPMs) are probabilistic machine learning models that parameterize probability

distributions via DNNs and, thus, combine the representation learning capacity and

generalization power of DNNs with probabilistic tools for representing and quantifying

uncertainty.

A DPM defines a probability distribution 𝑝𝜃(𝑥) over data 𝑥 parameterized by a DNN

with parameters 𝜃. In order to construct a DPM, one must specify parameterization (a

32

way in which a DNN is used to define a probability distribution), training algorithm(s),

and inference algorithm(s). Below, we provide an overview of several DPM families,

parameterizations of high-dimensional probability distributions, and algorithms for

training and inference.

2.2.1 Deep Probabilistic Models: Parameterization

Deep Discriminative Models (Classifiers / Regressors)

Deep discriminative models [130, 131, 139, 217] leverage neural networks to param-

eterize conditional distributions, enabling complex mappings from input data 𝑥 to

distributions over outputs 𝑦. For a classification problem with 𝐶 classes, 𝑝(𝑦|𝑥) is a

categorical distribution over classes 𝑦. Typically, 𝑝(𝑦|𝑥) is represented via the softmax

function applied to the outputs of a neural network:

𝑝𝜃(𝑦|𝑥) = [softmax(𝐹𝜃(𝑥))]𝑦, [softmax(𝑧)]𝑖 =
exp(𝑧𝑖)∑︀𝐶
𝑗=1 exp(𝑧𝑗)

, (2.3)

where 𝐹𝜃 : 𝒳 → R𝐶 denotes a mapping realized by a deep neural network with

parameters 𝜃.

Deep Autoregressive Models

Deep autoregressive models [1, 17, 18, 33, 39, 43, 54, 59, 67, 80–82, 137, 201, 202, 205,

237, 247, 248, 250] decompose the joint probability of a set of 𝑑 random variables

𝑥 = {𝑥𝑖}𝑑𝑖=1 into a product of 𝑑 conditional probabilities:

𝑝𝜃(𝑥1, . . . , 𝑥𝑑) = 𝑝𝜃(𝑥1)𝑝𝜃(𝑥2|𝑥1)𝑝𝜃(𝑥3|𝑥1, 𝑥2) . . . 𝑝𝜃(𝑥𝑑|𝑥1, . . . , 𝑥𝑑−1)

= 𝑝𝜃(𝑥1)
𝑑∏︁
𝑖=2

𝑝𝜃(𝑥𝑖|{𝑥𝑗}𝑖−1
𝑗=1), (2.4)

where each conditional probability 𝑝𝜃(𝑥𝑖|𝑥1, 𝑥2, . . . , 𝑥𝑖−1) is typically realized by a

deep discriminative model. Typical choices of network architectures include recurrent

neural networks (RNNs), convolutional neural networks (CNNs) or transformers, all

33

of which are designed to process long input sequences.

Variational Autoencoders (VAEs)

Variational Autoencoders (VAEs) [122, 249] are latent variables models. Models of

this kind are based on the idea that a complex probability distribution 𝑝𝜃(𝑥) can be

obtained by specifying a joint model 𝑝𝜃(𝑥, 𝑧) = 𝑝𝜃(𝑥|𝑧)𝑝(𝑧) with the auxiliary latent

(unobserved) variable 𝑧. The modeling power of this approach is due to the fact that

even if the factors 𝑝(𝑧), 𝑝𝜃(𝑥|𝑧) are modeled in a relatively simple way, the implied

marginal distribution

𝑝𝜃(𝑥) =

∫︁
𝑝𝜃(𝑥|𝑧)𝑝(𝑧) 𝑑𝑧, (2.5)

can be very complex.

In a typical implementation of a VAE the prior over latent variable 𝑝(𝑧) = 𝒩 (𝑧; 0, 𝐼)

is a standard normal distribution and the likelihood 𝑝𝜃(𝑥|𝑧) is defined by a “decoder”

network 𝐹𝜃, e.g.:

𝑝𝜃(𝑥|𝑧) = 𝒩 (𝑥;𝜇(𝑧, 𝜃), diag(𝜎2(𝑧, 𝜃)), (2.6)

where the likelihood of 𝑥 given 𝑧 is a normal distribution over 𝑥 with mean 𝜇(𝑧, 𝜃)

and the diagonal covariance matrix diag(𝜎2(𝑧, 𝜃)) are derived from the outputs of the

decoder network [𝜇(𝑧, 𝜃), 𝜎(𝑧, 𝜃)] = 𝐹𝜃(𝑧).

The marginal likelihood (2.5) requires the computation of a high-dimensional

integral that can not be carried out exactly. To overcome this issue, VAEs introduce

a variational posterior model 𝑞𝜑(𝑧|𝑥) defined by an “encoder network” 𝐸𝜑. Typical

parameterization of the approximate posterior has the form

𝑞𝜑(𝑧|𝑥) = 𝒩 (𝑧;𝜇(𝑥, 𝜑), diag(𝜎2(𝑥, 𝜑)), (2.7)

where [𝜇(𝑥, 𝜑), 𝜎(𝑥, 𝜑)] = 𝐸𝜑(𝑥).

Together, the encoder and the decoder networks form a variational autoencoder.

We provide an overview of VAE training procedure in Section 2.2.2.

34

Genrative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) [9, 78, 87, 116, 160, 183], use a parameteri-

zation that is similar to that of VAEs (2.5). However, the neural network underlying

the model in GANs is called a “generator” 𝐺𝜃 : 𝒵 → 𝒳 and a typical parameterization

of GAN, the generate directly outputs the sample 𝑥 = 𝐺𝜃(𝑧), which corresponds to a

Dirac-delta function likelihood 𝑝𝜃(𝑥|𝑧) = 𝛿(𝑥−𝐺𝜃(𝑧)) and the marginal likelihood

𝑝𝜃(𝑥|𝑧) =

∫︁
𝛿(𝑥−𝐺𝜃(𝑧))𝑝(𝑧) 𝑑𝑧. (2.8)

The main difference between GANs and VAEs is that GANs use a different kind of

auxiliary model for training. To avoid the complexity of evaluating the integral (2.8),

GANs employ an auxiliary “discriminator” model 𝒟𝜑 : 𝒳 → R which is a discriminative

model (e.g. a binary classifier) whose objective is to distinguish examples 𝑥 produced

by the generators from samples from the target distribution (e.g. dataset samples).

We provide an overview of GAN training procedure in Section 2.2.2.

Both GANs and VAEs represent the probability distribution 𝑝(𝑥) implicitly, in the

sense that the PDF 𝑝(𝑥) cannot be evaluated exactly. While likelihood evaluation in

these models is hard, they provide a direct recipe for drawing samples from 𝑝(𝑥) by 1)

drawing a latent variable sample 𝑧 ∼ 𝑝(𝑧); 2) drawing a sample �̂� from the conditional

distribution 𝑝(�̂�|𝑧 = 𝑧).

Energy-based Models (EBMs)

Energy-based Models (EBMs) [61, 95, 97, 141, 182, 230, 263] represent a complex

probability distribution by using an energy-network 𝐸𝜃(𝑥) : 𝒳 → R to parameterize

the “energy” function (unnormalized negative log-density):

− log 𝑝𝜃(𝑥) = 𝐸𝜃(𝑥) + log𝑍𝜃, 𝑝𝜃(𝑥) =
1

𝑍𝜃
exp(−𝐸𝜃(𝑥)), (2.9)

35

where the normalizing constant 𝑍 is

𝑍𝜃 =

∫︁
exp(−𝐸𝜃(𝑥)) 𝑑𝑥. (2.10)

The energy function completely characterizes the probability distribution 𝑝(𝑥).

By construction, EBMs can be readily used for all computations involving the un-

normalized log-density. However, evaluating normalized (log-)density is challenging

as the integral in the expression for the normalizing constant (2.10) is intractable.

Training and inference algorithms for energy-based models (reviewed in Sections 2.2.2,

2.2.3 respectively) are based on techniques that avoid the direction evaluation of the

normalizing constant [230].

Generative Flow Networks (GFlowNets)

Generative Flow Networks (GFlowNets) [16, 19, 158] represent a distribution 𝑝(𝑥)

over discrete space 𝒳 by parameterizing a stochastic policy that realizes a sample 𝑥

through a sequence of discrete updates.

Formally, possible GFlowNet generation trajectories are represented by a direct

acyclic graph (DAG) 𝒢 = (𝒮,𝒜) with the a of states (vertices) 𝒮 and a set of actions

(directed edges) 𝒜 ⊂ {𝑠→ 𝑠′ | 𝑠, 𝑠′ ∈ 𝒮}.

The set of states 𝒮 includes a special initial (source) state 𝑠0, which has no incoming

edges. The set 𝒳 of discrete objects 𝑥 realized by a GFlowNet is a subset of the set

of states: 𝒳 ⊂ 𝒮. The states 𝑥 ∈ 𝒳 are called terminal (sink) states. These states

have no outgoing edges.

A GFlowNet generation trajectory 𝜏 = (𝑠0 → 𝑠1 → . . . → 𝑠𝑇 = 𝑥) starts at the

initial state 𝑠0, passes through a sequence of transitions [(𝑠𝑖 → 𝑠𝑖+1)]
𝑇−1
𝑖=0 , (𝑠𝑖 → 𝑠𝑖+1) ∈

𝒜 until a terminal state 𝑥 = 𝑠𝑇 ∈ 𝒳 is reached. The sample realized by the trajectory

𝜏 = (𝑠0 → 𝑠1 → . . . → 𝑠𝑇 = 𝑥) is the terminal state of the trajectory 𝑥 = 𝑠𝑇 . We

denote the number 𝑇 of transitions in the trajectory 𝜏 by |𝜏 |.

A GFlowNet distribution 𝑝𝜃(𝑥) over 𝒳 is derived from a distribution 𝑝𝜃(𝜏) of

36

possible trajectories 𝜏 ∈ 𝒯

𝑝𝜃(𝜏) =

|𝜏 |−1∏︁
𝑡=0

𝑝𝜃(𝑠𝑡+1|𝑠𝑡). (2.11)

The equation above implies that trajectories are realized by a stochastic Markov policy

𝑝𝜃(𝑠
′|𝑠) parameterized by a neural network 𝐹𝜃(𝑠). One possible parameterization of

𝑝𝜃(𝑠
′|𝑠) is the following

𝑝𝜃(𝑠
′|𝑠) = [softmax(𝐹𝜃(𝑠))]𝑠′ , (2.12)

where the network 𝐹𝜃 takes as input the current state 𝑠 and outputs a vector of logits

for all possible successor states 𝑠′, such that (𝑠→ 𝑠′) ∈ 𝒜.

Under trajectory distribution 𝑝𝜃(𝜏) (2.11), the probability of a trajectory passing

through a given state 𝑠 ∈ 𝒮 is

𝑝𝜃(𝑠) := P𝜃(𝑠 ∈ 𝜏) =
∑︁

𝜏∈𝒯𝑠0,𝑠

|𝜏 |−1∏︁
𝑖=0

𝑝𝜃(𝑠𝑡+1|𝑠𝑡), (2.13)

where 𝒯𝑠0,𝑠 is the set of (partial) trajectories starting at 𝑠0 and ending at 𝑠. Note that

𝑝𝜃(𝑠) above is just a shorthand notation for the probability of observing a state 𝑠 on a

trajectory 𝜏 under trajectory distribution (2.11). 𝑝𝜃(𝑠) is not a valid distribution over

the states 𝑠 ∈ 𝒮, in particular
∑︀

𝑠∈𝒮 𝑝𝜃(𝑠) > 1.

The values of (2.13) evaluated at the terminal states 𝑥 ∈ 𝒳

𝑝𝜃(𝑥) =
∑︁

𝜏∈𝒯𝑠0,𝑥

|𝜏 |−1∏︁
𝑡=0

𝑝𝜃(𝑠𝑡+1|𝑠𝑡), 𝑥 ∈ 𝒳 . (2.14)

form a valid probability distribution over the terminal states:
∑︀

𝑥∈𝒳 𝑝𝜃(𝑥) =
∑︀

𝜏∈𝒯 𝑝𝜃(𝜏) =

1. 𝑝𝜃(𝑥) is the “model” distribution over the objects of interest realized by the GFlowNet

policy 𝑝𝜃(𝑠′|𝑠).

Markovian distributions over trajectories are connected to flows on graphs. To see

37

that, one can rewrite the equation (2.13) as

𝑝𝜃(𝑠
′) =

∑︁
𝑠:(𝑠→𝑠′)∈𝒜

𝑝𝜃(𝑠)𝑝𝜃(𝑠
′|𝑠). (2.15)

𝑝𝜃(𝑠) can be interpreted as a “probability flow” through state 𝑠. Equation (2.15)

describes the evolution of this flow under policy 𝑝𝜃(𝑠′|𝑠). The goal of GFlowNet can

be re-interpreted as learning the evolution of probability flow on the DAG 𝒢 = (𝒮,𝒜)

that leads to the target terminal distribution 𝑝(𝑥).

Note that GFlowNet creates a discrete-state probability flow on DAG 𝒢 with a

discrete set of transitions 𝒜.

Normalizing Flows

Normalizing flows [57, 58, 123, 187, 208] parameterize a complex 𝑑-dimensional prob-

ability distribution 𝑝𝜃(𝑥), 𝑥 ∈ R𝑑 through a sequence of transformations applied to a

simple base distribution 𝑝(𝑧0) (e.g. standard normal):

𝑥 = 𝑓𝜃,𝑡(𝑓𝜃,𝑇−1(. . . 𝑓𝜃,1(𝑧0) . . .)) = (𝑓𝜃,𝑇 ∘ 𝑓𝜃,𝑇−1 ∘ . . . ∘ 𝑓𝜃,1)(𝑧0), 𝑧0 ∼ 𝑝(𝑧0), (2.16)

or, equivalently,

𝑥 = 𝑧𝑇 , 𝑧𝑡 = 𝑓𝜃,𝑡(𝑧𝑡−1), 1 ≤ 𝑡 ≤ 𝑇, 𝑧0 ∼ 𝑝(𝑧0), (2.17)

where each of the mappings 𝑓𝑡,𝜃 : R𝑑 → R𝑑 are learnable bijections.

The density of the distribution 𝑝𝜃(𝑥) induced by the normalizing flow (2.16)-(2.17)

is given by

𝑝𝜃(𝑥) = 𝑝(𝑧0)
𝑇∏︁
𝑡=1

⃒⃒⃒
det

𝑑𝑓𝑡,𝜃
𝑑𝑧𝑡−1

⃒⃒⃒−1

, 𝑧𝑇 = 𝑥, 𝑧𝑡−1 = 𝑓−1
𝜃,𝑡 (𝑧𝑡), 1 ≤ 𝑡 ≤ 𝑇, (2.18)

which follows from the change of variables rule

𝑧𝑡 = 𝑓𝜃,𝑡(𝑧𝑡−1), 𝑝(𝑧𝑡) = 𝑝(𝑧𝑡−1)
⃒⃒⃒
det

𝑑𝑓𝑡,𝜃
𝑑𝑧𝑡−1

⃒⃒⃒−1

, (2.19)

38

applied repeatedly to sequence of variables 𝑧0, . . . , 𝑧𝑇 = 𝑥.

Re-written in terms of log-densities (2.18) gives

log 𝑝𝜃(𝑥) = log 𝑝(𝑧0)−
𝑇∑︁
𝑡=1

log
⃒⃒⃒
det

𝑑𝑓𝑡,𝜃
𝑑𝑧𝑡−1

⃒⃒⃒
. (2.20)

Construction of normalizing flows requires designing neural blocks 𝑓𝑡,𝜃 that imple-

ment bijection mappings and admit a simple way of computing the inverse 𝑓−1
𝑡,𝜃 and

the log-determinant of the Jacobian log
⃒⃒⃒
det

𝑑𝑓𝑡,𝜃
𝑑𝑧𝑡−1

⃒⃒⃒
.

Normalizing flows support direct likelihood evaluation and provide simple recipe

for sample generation, however the construction and learning of normalizing flows is

complicated by the constraint of using only bijective transformations.

Note that normalizing flows define a continuous-state discrete-time probability

flow 𝑝(𝑧0), 𝑝(𝑧1), . . . , 𝑝(𝑧𝑇−1), 𝑝(𝑥) with the flow evolution (2.19).

Continuous Normalizing Flows (CNFs)

Continuous Normalizing Flows (CNFs) [5, 6, 38, 79, 148, 152, 231, 243, 265, 266] build

a probabilistic distribution 𝑝𝜃(𝑥), 𝑥 ∈ R𝑑 by transforming a prior probability density

𝑝0(𝑧), 𝑧 ∈ R𝑑 via a flow induced by an ordinary differential equation (ODE):

𝑥 = 𝑧(𝑇),
𝑑

𝑑𝑡
𝑧(𝑡) = 𝑢𝜃(𝑧(𝑡), 𝑡), 0 < 𝑡 < 𝑇, 𝑧(0) ∼ 𝑝0, (2.21)

where the vector-field 𝑢𝜃(𝑧, 𝑡) is realized by a neural network 𝑢𝜃 : R𝑑 × R→ R𝑑.

Intuitively, (2.21) states that the CNF distribution 𝑝𝜃(𝑥) can be realized by drawing

an initial position of a “particle” 𝑧(0) from 𝑝0 and then simulating the dynamics of a

particle under the vector field 𝑢𝜃(𝑧, 𝑡). The particle evolution creates a probability

flow {𝑝𝑡}𝑇𝑡=0, that is the probability density 𝑝𝑡(𝑧) of 𝑧(𝑡) changes as 𝑧(𝑡) evolves. This

PDF evolution is described by the well-known partial differential equation (PDE)

39

called the Liouville equation:

𝜕

𝜕𝑡
𝑝𝑡(𝑧) = −

(︀
∇𝑧 · (𝑢𝜃 𝑝𝑡)

)︀⃒⃒
𝑧

= −
𝑛∑︁
𝑖=1

𝜕

𝜕𝑧𝑖
([𝑢𝜃(𝑧, 𝑡)]𝑖 𝑝𝑡(𝑧)), 0 < 𝑡 < 𝑇, 𝑧 ∈ R𝑑, (2.22)

𝜕

𝜕𝑡
log 𝑝𝑡(𝑧) =−

(︀
∇𝑧 · 𝑢𝜃 + 𝑢𝜃 · ∇𝑧 log 𝑝𝑡

)︀⃒⃒
𝑧

=−
(︃

𝑑∑︁
𝑖=1

𝜕

𝜕𝑧𝑖
[𝑢𝜃(𝑧, 𝑡)]𝑖 +

𝑑∑︁
𝑖=1

[𝑢𝜃(𝑧, 𝑡)]𝑖
𝜕

𝜕𝑧𝑖
log 𝑝𝑡(𝑧)

)︃
.

(2.23)

Evaluating the density 𝑝𝑡(𝑧) along the trajectory of ODE (2.21) gives

𝜕

𝜕𝑡
𝑝𝑡(𝑧(𝑡)) = −𝑝𝑡(𝑧(𝑡))

𝑑∑︁
𝑖=1

𝜕

𝜕𝑧𝑖
[𝑢𝜃(𝑧(𝑡), 𝑡)]𝑖, (2.24)

𝜕

𝜕𝑡
log 𝑝𝑡(𝑧(𝑡)) = −

𝑑∑︁
𝑖=1

𝜕

𝜕𝑧𝑖
[𝑢𝜃(𝑧(𝑡), 𝑡)]𝑖 = −Tr

(︀
𝜕𝑢𝜃
𝜕𝑧

(𝑧(𝑡), 𝑡)
)︀
, (2.25)

which is known as the instantaneous change of variables formula.

Given a point 𝑥 = 𝑧(𝑇), the log-density log 𝑝𝜃(𝑥) can be recovered by simulating

ODE dynamics 𝑧(𝑡) backward in time

⎡⎣ 𝑧0

log 𝑝𝜃(𝑥)− log 𝑝0(𝑧0)

⎤⎦ =

⎡⎣𝑧(𝑇)

0

⎤⎦+

∫︁ 0

𝑇

⎡⎣ 𝑢𝜃(𝑧(𝑡), 𝑡)

−Tr
(︀
𝜕𝑢𝜃
𝜕𝑧

(𝑧(𝑡), 𝑡)
)︀
⎤⎦ 𝑑𝑡. (2.26)

Once 𝑧0 and log 𝑝𝜃(𝑥)− log 𝑝0(𝑧0) are evaluated, log 𝑝0(𝑧0) can be evaluated and added

to the solution yielding log 𝑝𝜃(𝑥).

Continuous normalizing flows support direct likelihood evaluation and provide a

simple recipe for sample generation. Both of these tasks require numerically simulating

the ODEs, and numerical simulation inevitably introduces approximation errors. More-

over, direct evaluation of the divergence Tr
(︀
𝜕𝑢𝜃
𝜕𝑧

(𝑧(𝑡), 𝑡)
)︀

is computationally expensive

and requires repeated calls to automatic differentiation. Instead, many practical

realizations rely on stochastic trace estimators, which can speed up computation but

create another source of approximation errors.

Note that continuous normalizing flows define a continuous-state continuous-time

probability flow {𝑝𝑡(𝑧)}𝑇𝑡=0 with the flow evolution (2.22)-(2.25).

40

Diffusion Models

To describe the flow models above, we first introduced the parameterization of the

dynamical systems (state update rules) and then wrote down the implied probability

flows (probability update rules). We follow the opposite route to introduce diffusion

models: start with a desired probability flow and then introduce state updates that

produce the desired flow.

Diffusion Model Probability Flows. Diffusion models [99, 117, 226–229, 231]

aim to reproduce the diffusion probability flow {𝑞𝑡(𝑧)}𝑇𝑡=0, which is constructed from

the target data distribution 𝑞0 = 𝑝data by applying Gaussian “noising” kernel (also

called “forward process”) 𝑞(𝑧𝑡|𝑧data) = 𝒩 (𝑧𝑡; 𝑧data, 𝜎(𝑡)2𝐼):

𝑞𝑡(𝑧𝑡) =

∫︁
𝑞(𝑧𝑡|𝑧data)𝑝data(𝑧data) 𝑑𝑧data = 𝑝data ⋆ 𝒩 (0, 𝜎(𝑡)2𝐼), 0 ≤ 𝑡 ≤ 𝑇, (2.27)

where ⋆ denotes the convolution of probability density functions, and 𝜎(𝑡) > 0 is a

smooth monotonously increasing function which controls the standard deviation of

the Gaussian noise added at time 𝑡.

Crucially, for significantly large 𝜎(𝑇) the end-time distribution 𝑝𝑇 (𝑧) becomes

very close to a pure Gaussian noise 𝑞𝑇 (𝑧) ≈ 𝑝prior(𝑧) = 𝒩 (𝑧; 0, 𝜎(𝑇)2). The idea of

diffusion models is to learn a state update dynamics that initialized with a prior

sample 𝑧𝑇 ∼ 𝑝prior(𝑧) creates a flow 𝑝𝑡 that runs backwards in time 𝑡 = 𝑇 → 𝑡 = 0 and

reproduces the probability flow 𝑝𝑡 ≈ 𝑞𝑡 as closely as possible so that 𝑝0 approaches 𝑞0

which is minimally noised version of the target distribution 𝑝data.

The diffusion probability flow (2.27) can be viewed as the solution of the heat

equation PDE

𝜕

𝜕𝑡
𝑞𝑡(𝑧) = �̇�(𝑡)𝜎(𝑡)∇𝑥 · (∇𝑥𝑞𝑡(𝑥)), 0 < 𝑡 < 𝑇, 𝑧 ∈ R𝑑, (2.28)

𝑞0 = 𝑝data ⋆ 𝒩 (0, 𝜎(0)2𝐼). (2.29)

There are several ways of describing the probability flow (2.27)-(2.28) as the product

41

of the evolution of a dynamical system. We review a few notable examples below.

In physics, diffusion processes arise as limits of random-walk processes. Consider a

trajectory 𝑧𝑡 of a particle that moves in random directions distributed by a Gaussian

law

𝑧𝑡+Δ𝑡 − 𝑧𝑡 = ∆𝑧𝑡 ∼ 𝒩 (∆𝑧𝑡; 0, (𝜎(𝑡+ ∆𝑡)2 − 𝜎(𝑡)2)𝐼). (2.30)

Under the linearization 𝜎(𝑡+ ∆𝑡)2 − 𝜎(𝑡)2 ≈ 𝑑
𝑑𝑡

(𝜎(𝑡)2)∆𝑡 = 2�̇�(𝑡)𝜎(𝑡)∆𝑡 and infinites-

imal time increments ∆𝑡, the discrete-time process 𝑧𝑡 converges to the Stochastic

Differential Equation (SDE)

𝑑𝑧(𝑡) =
√︀

2�̇�(𝑡)𝜎(𝑡)𝑑𝑤𝑡, 0 < 𝑡 < 𝑇, 𝑧(0) ∼ 𝑞0, (2.31)

where 𝑤𝑡 is the standard Wiener process (a.k.a., Brownian motion). The evolution of

the probability density 𝑞𝑡 of the SDE process is described by the Fokker-Planck PDE

(a.k.a the Kolmogorov forward PDE):

SDE : 𝑑𝑧(𝑡) = 𝑓(𝑧(𝑡), 𝑡)𝑑𝑡+ 𝑔(𝑡)𝑑𝑤𝑡,

⇓
PDE :

𝜕

𝜕𝑡
𝑞𝑡(𝑧) = −∇𝑧 · (𝑓(𝑧, 𝑡)𝑞𝑡(𝑧)) +

1

2
𝑔(𝑡)2∇2

𝑧 (𝑞𝑡(𝑧)),

(2.32)

where 𝑓(·, ·) : R𝑛 × R → R𝑛 is the drift term and 𝑔(·) : R → R is the diffusion

coefficient.

Note that the Fokker-Planck PDE (2.32) applied to the SDE (2.31) recovers the

heat equation PDE (2.28).

The “forward” SDE (2.31) produces the probability flow {𝑞𝑡(𝑧)}𝑇𝑡=0 when ran

forward in time. A stochastic process theory result of Anderson [7] states that for

each “forward” SDE, there is a corresponding “backward” SDE that runs backwards in

time and reproduces the same marginals {𝑞𝑡}𝑇𝑡=0:

Forward SDE : 𝑑𝑧(𝑡) = 𝑓(𝑧(𝑡), 𝑡)𝑑𝑡+ 𝑔(𝑡)𝑑𝑤𝑡,

⇓
Backward SDE : 𝑑𝑧(𝑡) =

[︀
𝑓(𝑧(𝑡), 𝑡)− 𝑔(𝑡)2∇𝑧 log 𝑞𝑡(𝑧(𝑡))

]︀
𝑑𝑡+ 𝑔(𝑡)𝑑𝑤𝑡,

(2.33)

42

where 𝑤𝑡 is the standard Wiener process in reverse time. Applying the SDE reversal

rule (2.33) to the diffusion SDE (2.36), we obtain the diffusion backward SDE

𝑑𝑧(𝑡) = −2�̇�(𝑡)𝜎(𝑡)∇𝑧 log 𝑞𝑡(𝑧(𝑡))𝑑𝑡+
√︀

2�̇�(𝑡)𝜎(𝑡)𝑑𝑤𝑡, 0 < 𝑡 < 𝑇, 𝑧(0) ∼ 𝑞0. (2.34)

The Fokker-Planck PDE (2.32) can be re-written (see e.g. [161, 231]) in the form

of a Liouville PDE (2.22) for a determinstic ODE with the appropriately chosen vector

field:

ODE : 𝑑𝑧(𝑡) =

[︂
𝑓(𝑧(𝑡), 𝑡)𝑑𝑡− 1

2
𝑔(𝑡)2∇𝑧 log 𝑞𝑡(𝑧(𝑡))

]︂
𝑑𝑡,

⇓
PDE :

𝜕

𝜕𝑡
𝑞𝑡(𝑧) = −∇𝑧 · (𝑓(𝑧, 𝑡)𝑞𝑡(𝑧)) +

1

2
𝑔(𝑡)2∇2

𝑧 (𝑞𝑡(𝑧)).

(2.35)

Applying the SDE (2.32) to ODE (2.35) conversion to the diffusion SDE (2.31), we

obtain the diffusion ODE

𝑑𝑧(𝑡) = −�̇�(𝑡)𝜎(𝑡)∇𝑧 log 𝑞𝑡(𝑧(𝑡)) 𝑑𝑡, 0 < 𝑡 < 𝑇, 𝑧(0) ∼ 𝑞0, (2.36)

which produces the probability flow {𝑞𝑡(𝑧)}𝑇𝑡=0 (2.27)-(2.28). As ODE dynamics is

deterministic by construction the ODE (2.36) can be run both forwards and backwards

in time.

Diffusion Model Parameterization. The analysis above shows that to achieve the

goal of reversing the diffusion process (2.27)-(2.28), one can use either the backward

SDE (2.34) or the backward ODE (2.36). Note that both (2.34) and (2.36) involve the

score function ∇𝑧 log 𝑞𝑡(𝑧) of the diffusion marginal 𝑞𝑡(𝑧). Dependence on the diffusion

score prevents us from simulating backward SDE or ODE directly, as the score

∇𝑧𝑡 log 𝑞𝑡(𝑧𝑡) = ∇𝑧𝑡 log

(︂∫︁
𝑞(𝑧𝑡|𝑧0)𝑞0(𝑧0) 𝑑𝑧0

)︂
, (2.37)

is intractable. However, as we discuss in Section 2.2.2, one can train a learnable

approximation 𝑢𝜃(𝑧, 𝑡) ≈ ∇𝑧 log 𝑞𝑡(𝑧) using samples from 𝑝data and the forward process

43

𝑞(𝑧𝑡|𝑧data) (2.27).

This observation inspires the construction of the diffusion model probability flows

parameterized via backward SDE (2.34) or backward ODE (2.36) and the learnable

score-function approximation 𝑢𝜃(𝑧, 𝑡) parameterized by a neural network (which is

often called “score-network”)

𝑝ODE
𝜃,𝑡 (𝑧) : 𝑑𝑧(𝑡) = −�̇�(𝑡)𝜎(𝑡)𝑢𝜃(𝑧(𝑡), 𝑡)𝑑𝑡, 𝑇 > 𝑡 > 0,

𝑧(𝑇)∼𝑝prior,

𝑝SDE
𝜃,𝑡 (𝑧) : 𝑑𝑧(𝑡) = −2�̇�(𝑡)𝜎(𝑡)𝑢𝜃(𝑧(𝑡), 𝑡)𝑑𝑡+

√︀
2�̇�(𝑡)𝜎(𝑡)𝑑𝑤𝑡, 𝑇 > 𝑡 > 0,

𝑧(𝑇)∼𝑝prior.

(2.38)

These processes parameterize probability distributions 𝑝ODE
𝜃 (𝑥), 𝑝SDE

𝜃 (𝑥) which are

obtained as the terminal distributions of respective probability flows {𝑝ODE
𝜃,𝑡 }0𝑡=𝑇 ,

{𝑝SDE
𝜃,𝑡 }0𝑡=𝑇 at 𝑡 = 0.

Note that diffusion models are realized by continuous-time, continuous-state

stochastic, or deterministic processes. Our presentation and notation above fol-

low those of Karras et al. [117]. There exist different descriptions of diffusion models

[99, 117, 134, 226, 227, 231, 273]. Early formulations of diffusion models were described

as discrete-time, continuous-state stochastic processes [99, 226, 227].

2.2.2 Deep Probabilistic Models: Training

In Section 2.2.1 we reviewed a set of deep probabilistic model families and techniques

they employ for construction of high-dimensional probability distributions 𝑝𝜃 parame-

terized by deep neural networks. This section reviews techniques for formalization

and construction of training algorithms. Training algorithms take a training data

𝒟𝑛 = {𝑥𝑖}𝑛𝑖=1 as an input and produce an estimate of neural network parameters 𝜃*

that agree with the data the most according to a specific notion of “agreement” or

“optimality”.

Throughout this section we assume that the dataset 𝒟𝑛 consists of 𝑛 i.i.d. samples

44

from an unknown data generating distribution 𝑝*(𝑥). We use 𝑝𝜃(𝑥) to denote the

model distribution parameterized by 𝜃 and 𝑝𝑛 to denote the empirical distribution

constructed from the dataset 𝒟𝑛:

𝑝𝑛(𝑥) =
1

𝑛

𝑛∑︁
𝑖=1

𝛿(𝑥− 𝑥𝑖), 𝒟𝑛 = {𝑥𝑖}𝑛𝑖=1, 𝑥𝑖
i.i.d∼ 𝑝*(𝑥). (2.39)

Large-Scale Training and Stochastic Gradient-Based Optimization

One of the key requirements for the design of training algorithms for deep probabilistic

models is computational efficiency and the capacity to scale to large amounts of data.

This requirement is motivated by the curse of dimensionality: faithful estimation

of probability distributions in high dimensional data domains (where deep neural

networks shine) requires a large number of samples. It is a common practice to train

models on millions of examples. Some modern models are trained on datasets with

sizes measured in billions and trillions of examples [1]. It has been observed that some

phenomena and qualitative changes in model performance emerge only in models

trained at scale (large models trained on large datasets) [see e.g. 15].

The core algorithmic technique behind large-scale training algorithms is stochastic

gradient-based learning which combines two ideas: learning by gradient descent and

utilization of stochastic gradient estimation.

Gradient descent has emerged as the go-to algorithm for training deep neural

networks since their inception [217]. Suppose that model training can be cast as

minimization of a function ℒ(𝜃,𝒟𝑛) that depends on the model parameters 𝜃 and

the training dataset 𝒟𝑛. We assume that ℒ(𝜃,𝒟𝑛) measure the agreement between

the model and the data: the lower the value ℒ(𝜃,𝒟𝑛) the stronger the agreement.

Moreover, we assume that ℒ is smooth with respect to 𝜃. We will refer to this function

as loss function. The optimal parameters 𝜃* are those that minimize the loss:

𝜃* ∈ Argmin
𝜃

ℒ(𝜃,𝒟𝑛). (2.40)

Gradient descent (GD) progresses towards an optimal solution by repeatedly

45

performing steps along the negative gradient of the loss function ℒ. Starting from an

initialization 𝜃0 the gradient descent updates are given by

𝜃𝑖 = 𝜃𝑖−1 − 𝜂𝑖 · ∇𝜃ℒ(𝜃𝑖−1,𝒟𝑛), (2.41)

where {𝜂𝑖} is the sequence of step sizes 𝜂𝑖 > 0. Since the negative gradient−∇𝜃ℒ(𝜃𝑖,𝒟𝑛)

is the direction of the steepest decline of the loss in a vicinity of the current iterate

𝜃𝑖, given appropriate step sizes gradient descent decreases the value of the loss at

each step. Gradient descent is known to have linear convergence rate to the optimal

solution for Lipschitz-smooth and strongly convex functions. We refer the reader to

[30, 90, 135, 178, 232] for theoretical analysis of convergence of gradient descent for

certain classes of loss functions.

Stochastic gradient descent (SGD) [210] extends gradient descent by minimizing

the loss using the stochastic estimates of the gradient, rather than the exact gradient.

Formally, an unbiased stochastic gradient for a loss function ℒ(𝜃,𝒟𝑛) is a random

variable 𝑔(𝜃) whose expectation is the gradient of the loss: E[𝑔(𝜃)] = ∇𝜃ℒ(𝜃,𝒟𝑛). It

might seem that using stochastic gradients for gradient descent updates is suboptimal

as stochastic gradient might include some noise and deviate from the exact gradient,

and, therefore, might not provide the direction of steepest descent. However, in

practice computing stochastic estimates of the gradient often requires less compute

resources and can be done faster than computing the exact gradient. In many cases,

performing just one exact gradient update takes the same time as performing thousands

to millions stochastic gradient updates.

The most common scenario where stochastic gradient is used in machine learning

is optimizing loss functions of the form

ℒ(𝜃,𝒟𝑛) =
1

𝑛

𝑛∑︁
𝑖=1

ℓ(𝜃, 𝑥𝑖), (2.42)

where ℓ(𝜃, 𝑥) is a per-example loss function. For such additive function the full gradient

46

is given by

∇𝜃ℒ(𝜃,𝒟𝑛) =
1

𝑛

𝑛∑︁
𝑖=1

∇𝜃ℓ(𝜃, 𝑥𝑖). (2.43)

The computation time of the full gradient is proportional to the total dataset size 𝑛.

A stochastic gradient estimate for an additive loss can be constructed as

𝑔(𝜃) =
1

𝑚

∑︁
𝑖∈ℬ𝑚

∇𝜃ℓ(𝜃, 𝑥𝑖), ℬ𝑚 ⊂ {1, . . . , 𝑛}, |𝐵𝑚| = 𝑚, (2.44)

where ℬ𝑚 is a randomly uniformly chosen subset of indices ℬ𝑚 ⊂ {1, . . . , 𝑛} of size

𝑚. The dataset subset {𝑥𝑖}𝑖∈ℬ𝑚 ⊂ 𝒟𝑛 is called “mini-batch” and 𝑚 is the mini-batch

size. By construction, the mini-batch gradient is an unbiased estimate of the full

gradient: E[𝑔(𝜃)] = ∇𝜃ℒ(𝜃,𝒟𝑛). The time needed to compute the mini-batch gradient

is proportional to the mini-batch size 𝑚, which can be chosen to be much smaller that

the total dataset size (𝑚≪ 𝑛). We refer the reader to [30, 90, 135] for discussion of

convergence of stochastic gradient descent and its variants for certain classes of loss

functions. The algorithms reviewed and developed in this thesis are based on SGD

and its variants such as Adam [120].

Under the stochastic gradient-based learning paradigm the goal of learning algo-

rithm design is to find 1) a loss function ℒ(𝜃) which measures agreement between

model and data; and 2) a compute-efficient gradient estimator 𝑔(𝜃) for ℒ. Assuming

that the implementation of the algorithm is based on stochastic optimization methods,

in the remaining of this thesis we will often write down the loss functions in the more

abstract way as expectations of the form

ℒ(𝜃) = E𝑝𝜃(𝑥)[𝑓(𝑥, 𝜃)], (2.45)

where both the distribution 𝑝𝜃(𝑥) and the function inside the expectation depend

on parameters 𝜃. Gradient estimation for such objectives can be formalized through

the notion of stochastic computation graphs [173, 223]. Taking into the account

the dependency of the probability distribution 𝑝𝜃 on the parameters often requires

special care since it is a hard to build an efficient and accurate estimator for a general

47

probability distribution which might depend on the parameters in a complex way. A

set of techniques have been developed to address this problem [173].

For most of the objectives used in this thesis, the parameterization of the dis-

tribution 𝑝𝜃 is known, and the graident estimators can be obtained using the “re-

parameterization trick” [122, 209]. Suppose that 𝑥 ∼ 𝑝𝜃(𝑥) can be obtained via

transforming another random variable 𝜀 ∼ 𝑝(𝜀) by a parametric smooth function

𝑥 = 𝑇 (𝜀, 𝜃), and 𝑝(𝜀) admits efficient sampling. Then, objective (2.45) can be re-

written as

ℒ(𝜃) = E𝑝𝜃(𝑥)[𝑓(𝑥, 𝜃)],= E𝑝(𝜀)[𝑓(𝑇 (𝜀, 𝜃), 𝜃)], (2.46)

where the distribution in the last expectation does not depend on 𝜃. A Monte-Carlo

estimate of the gradient ∇𝜃ℒ(𝜃) can be obtained as

𝑔(𝜃) =
1

𝑚

𝑚∑︁
𝑖=1

∇𝜃𝑓(𝑇 (𝜀𝑖, 𝜃), 𝜃), 𝜀1, . . . , 𝜀𝑚 ∼ 𝑝(𝜀). (2.47)

Maximum Likelihood Estimation

The learning problem can be viewed as the statistical estimation problem: finding the

model 𝑝𝜃*(𝑥) that provides the most likely explanation of the observed data 𝒟𝑛. One

way of formalizing this problem is through the maximum likelihood estimation. Given

a dataset 𝒟𝑛, the likelihood of this dataset to be drawn from the model 𝑝𝜃 is given by

likelihood function

𝑓(𝜃,𝒟𝑛) =
𝑛∏︁
𝑖=1

𝑝(𝑥𝑖; 𝜃). (2.48)

The maximum-likelihood estimate of the parameters 𝜃 are 𝜃MLE ∈ Argmax𝜃 𝑓(𝜃,𝒟𝑛,)
or, equivalently, the parameters that minimize the mean negative log-likelihood loss

ℒMNLL(𝜃,𝒟𝑛) =
1

𝑛

𝑛∑︁
𝑖=1

[− log 𝑝𝜃(𝑥𝑖)]. (2.49)

Note that one can re-write the mean negative log-likelihood loss as the expectation

48

of the negative log-likelihood taken over the empirical data distribution

ℒMNLL(𝜃,𝒟𝑛) = E𝑝𝑛(𝑥)[− log 𝑝𝜃(𝑥𝑖)]. (2.50)

Divergence Minimization

This last expression suggests that we seek the model 𝑝𝜃(𝑥) that assigns high likelihood

to points that are likely under the data distribution 𝑝𝑛(𝑥). In fact, one can connect the

mean negative log-likelihood to a divergence (a kind of “distance” function) between

probability distributions 𝑝𝑛(𝑥) and 𝑝𝜃(𝑥). A probability distribution divergence is a

function 𝐷(·, ·) such that

1)𝐷(𝑝, 𝑞) ≥ 0, ∀ 𝑝, 𝑞 ∈ 𝒫(𝒳), 2)𝐷(𝑝, 𝑞) = 0 ⇐⇒ 𝑝 = 𝑞, (2.51)

where 𝒫(𝒳) is the space of probability distributions over the space 𝒳 . As divergence

functions are non-negative and take the value of zero if and only if the two distributions

are equal, divergences can be used to measure discrepancy between two distributions

and to guide parameterized distributions to alignment.

A well-known example of a divergence function is the Kullback-Leibler (KL)

divergence 𝐷KL(·, ·):

𝐷KL(𝑝, 𝑞) = E𝑝(𝑥)
[︂
log

𝑝(𝑥)

𝑞(𝑥)

]︂
= E𝑝(𝑥)[log 𝑝(𝑥)] + E𝑝(𝑥)[− log 𝑞(𝑥)]. (2.52)

The mean negative-likelihood loss is equivalent to the KL divergence between the

data distribution 𝑝𝑛(𝑥) and the model distribution 𝑝𝜃(𝑥):

ℒMNLL(𝜃,𝒟𝑛) = 𝐷KL(𝑝𝑛, 𝑝𝜃) + Constant. (2.53)

This observation provides a more general view of model estimation, we seek the model

distribution 𝑝𝜃*(𝑥) that minimizes the discrepancy with the data distribution 𝑝𝑛(𝑥),

where the discrepancy is measured by a divergence function 𝐷(·, ·) of our choice. In

the remainder of this section, we show a few examples of learning algorithms derived

49

from this general divergence minimization paradigm.

Exact Models: Direct Maximum-Likelihood Estimation

The minimization of the mean negative log-likelihood loss requires evaluating the

log-likelihood log 𝑝𝜃(𝑥) and computing its gradients w.r.t. parameters 𝜃. In models

that support direct log-likelihood evaluation, such as deep discriminative models,

autoregressive models, normalizing flows, and CNFs, maximum likelihood training can

be performed directly. The mean negative log-likelihood loss has the additive form

and its stochastic gradient can be estimated with mini-batches.

VAEs: Variational Inference and Evidence Lower Bound

VAEs directly parameterize the conditional likelihood 𝑝𝜃(𝑥|𝑧) and the prior 𝑝(𝑧),

however the expression for the marginal likelihood 𝑝𝜃(𝑥) (2.5) involves an intractable

integral over the latent variable 𝑧. While the marginal likelihood can not be evaluated

directly, it can be approximated with the tecnhique known as “Variational Inference”

(VI).

Variational Inference extends the model by introducing an auxiliary condtional

distribution 𝑞(𝑧|𝑥). Observe, that for any choice of the distribution 𝑞(𝑧|𝑥) the following

representation of the log of marginal likelihood 𝑝𝜃(𝑥) holds:

log 𝑝𝜃(𝑥) = E𝑞(𝑧|𝑥)[log 𝑝𝜃(𝑥)] (2.54)

= E𝑞(𝑧|𝑥)[log 𝑝𝜃(𝑥|𝑧) + log 𝑝𝜃(𝑧)]− E𝑞(𝑧|𝑥)[log 𝑝𝜃(𝑧|𝑥)] (2.55)

= E𝑞(𝑧|𝑥)[log 𝑝𝜃(𝑥|𝑧) + log 𝑝(𝑧)− log 𝑞(𝑧|𝑥)] +𝐷KL(𝑞(𝑧|𝑥), 𝑝𝜃(𝑧|𝑥)). (2.56)

The expectation in the last expression is known as the “Evidence Lower Bound”

(ELBO) or “Variational Lower Bound”:

ELBO(𝑝𝜃(𝑥|𝑧), 𝑝(𝑧), 𝑞(𝑧|𝑥), 𝑥) = E𝑞(𝑧|𝑥)[log 𝑝𝜃(𝑥|𝑧) + log 𝑝(𝑧)− log 𝑞(𝑧|𝑥)] (2.57)

= log 𝑝𝜃(𝑥)−𝐷KL(𝑞(𝑧|𝑥), 𝑝𝜃(𝑧|𝑥)) ≤ log 𝑝𝜃(𝑥), (2.58)

50

which indeed provides a lower bound on the log of marginal likelihood since

𝐷KL(𝑞(𝑧|𝑥), 𝑝𝜃(𝑧|𝑥)) is non-negative for any 𝑞(𝑧|𝑥).

Note that the expression for the ELBO includes logarithms of model distributions

log 𝑝𝜃(𝑥|𝑧), log 𝑝(𝑧), which can be evaluated directly. The only remaining unknown

distribution is 𝑞(𝑧|𝑥). The VAE model uses a parametric 𝑞𝜑(𝑧|𝑥) parameterized by a

neural network called “encoder” with parameters 𝜑. With this model, a Monte-Carlo

estimate of ELBO can be obtained by drawing samples from 𝑞𝜑(𝑧|𝑥) and evaluating

the logarithms of model distributions log 𝑝𝜃(𝑥|𝑧), log 𝑝(𝑧), log 𝑞𝜑(𝑧|𝑥).

Thus, we derived a practical algorithm for the estimation and maximization of

the ELBO. Maximization of ELBO does not correspond to direct maximization of

log-likelihood log 𝑝𝜃(𝑥). However, ELBO maximization is justified by the following

observations

1. ELBO(𝑝𝜃(𝑥|𝑧), 𝑝(𝑧), 𝑞𝜑(𝑧|𝑥), 𝑥) is a valid lower bound on the log-likelihood

log 𝑝𝜃(𝑥). Thus, achieving a certain value of ELBO during ELBO maximization

guarantees that the log-likelihood log 𝑝𝜃(𝑥) is at least as large as the achieved

value of ELBO.

2. The decomposition ELBO(𝑝𝜃(𝑥|𝑧), 𝑝(𝑧), 𝑞𝜑(𝑧|𝑥), 𝑥) = log 𝑝𝜃(𝑥) −
𝐷KL(𝑞(𝑧|𝑥), 𝑝𝜃(𝑧|𝑥)) implies that maximization of ELBO w.r.t. 𝑞𝜑(𝑧|𝑥)

doesn’t change the value of log 𝑝𝜃(𝑥) but makes the lower bound tighter. In

particular, if 𝑞𝜑(𝑧|𝑥) reaches the optimal solution 𝑞*(𝑧|𝑥) = 𝑝𝜃(𝑧|𝑥), the lower

bound becomes tight, and ELBO is exactly equal to the log-likelihood.

Therefore, maximization of the ELBO w.r.t. both parameters 𝜃 of the decoder and

parameters 𝜑 of the encoder approaches log-likelihood maximization (assuming that the

encoder and decoder are flexible enough to represent the respective target distributions

and the optimization is performed to optimality).

Negating the expression for ELBO (2.57) and averaging of examples 𝑥𝑖 in the

51

dataset 𝒟𝑛 we obtain the ELBO loss function

ℒELBO(𝜃, 𝜑,𝒟𝑛) = E𝑝𝑛(𝑥)E𝑞𝜑(𝑧|𝑥)[− log 𝑝𝜃(𝑥|𝑧)− log 𝑝(𝑧) + log 𝑞𝜑(𝑧|𝑥)] (2.59)

= E𝑝𝑛(𝑥)
[︀
E𝑞𝜑(𝑧|𝑥)[− log 𝑝𝜃(𝑥|𝑧)] +𝐷KL(𝑞𝜑(𝑧|𝑥), 𝑝(𝑧))

]︀
(2.60)

≥ ℒMNLL(𝜃,𝒟𝑛). (2.61)

This loss can be minimized by approximating the loss and its gradient with Monte-

Carlo estimates (sampling �̂� ∼ 𝑝𝑛(𝑥) and 𝑧 ∼ 𝑞𝜑(𝑧|𝑥 = �̂�)) and evaluating all the log-

likelihood values in the expression (2.59). For some choices of the encoder distribution

𝑞𝜑(𝑧|𝑥) and the prior distribution 𝑝(𝑧), the KL divergence 𝐷KL(𝑞𝜑(𝑧|𝑥), 𝑝(𝑧)) can be

computed analytically instead of being approximated with MC estimates, and, then,

the expression (2.60) can be used.

The first term in the expression (2.60) is known as the “log-likelihood loss” or the

“reconstruction loss”. This term encourages the encoder 𝑞𝜑(𝑧|𝑥) and the decoder 𝑝𝜃(𝑥|𝑧)

to work together to reconstruct the sample 𝑥 from its embedding 𝑧 as accurately as

possible. The second term is the “KL regularization term”, which penalizes the encoder

distribution 𝑞𝜑(𝑧|𝑥) for deviation from the prior over latent codes 𝑝(𝑧).

GANs: Variational Form of Divergences and Game-Theoretic Learning

Algorithms

Similar to VAEs considered above, GANs also do not provide a direct way of evaluating

the likelihood 𝑝𝜃(𝑥) as this evaluation involves an intractable integral (2.8). While the

two models parameterize the model distribution in a similar way, GANs work around

the issue of direct likelihood evaluation in a different way.

Specifically, GAN training is built on the observation that a divergence between

two distributions can be estimated by training an auxiliary discriminative model that

scores samples from two distributions and aims to tell the two sets of samples apart.

Let us consider a concrete formalization of this idea. Given two probability density

functions 𝑝(𝑥) and 𝑞(𝑥), we construct a probabilistic classifier that we will call a

“discriminator” 𝑟𝜑(𝑦|𝑥), where 𝑦 ∈ {−1,+1} is a binary label, and we parameterize

52

the classifier with a neural network 𝑢𝜑(·) : 𝒳 → R with parameters 𝜑:

𝑟𝜑(𝑦 = 𝑦|𝑥) =
1

1 + exp(−𝑦 · 𝑢𝜑(𝑥))
, 𝑦 ∈ {−1,+1}. (2.62)

Suppose that we train the classifier to distinguish between samples �̂� ∼ 𝑝(𝑥) drawn

from 𝑝(𝑥) (that we will label with 𝑦 = +1) and samples �̂� ∼ 𝑞(𝑥) drawn from 𝑞(𝑥)

(that we will label with 𝑦 = −1) by minimizing binary classification mean negative

log-likelihood

ℒ𝐷(𝜑, 𝑝, 𝑞) =
1

2
E𝑝(𝑥)[− log 𝑟𝜑(𝑦 = +1|𝑥)] +

1

2
E𝑞(𝑥)[− log 𝑟𝜑(𝑦 = −1|𝑥)] (2.63)

=
1

2
E𝑝(𝑥)[log(1 + exp(−𝑢𝜑(𝑥)))] +

1

2
E𝑞(𝑥)[log(1 + exp(𝑢𝜑(𝑥)))]. (2.64)

The expressions for the optimal function 𝑢* that minimizes the classification negative

log-likelihood loss and the associated optimal classifier 𝑟* can be derived analytically

and are given by

𝑢*(𝑥) = log
𝑝(𝑥)

𝑞(𝑥)
, 𝑟*(𝑦 = 𝑦|𝑥) =

1

1 + exp
(︁
−𝑦 · log 𝑝(𝑥)

𝑞(𝑥)

)︁ , (2.65)

𝑟*(𝑦 = +1|𝑥) =
𝑝(𝑥)

𝑝(𝑥) + 𝑞(𝑥)
, 𝑟*(𝑦 = −1|𝑥) =

𝑞(𝑥)

𝑝(𝑥) + 𝑞(𝑥)
. (2.66)

The optimal discriminator 𝑢* is exactly the log of ratio of densities log 𝑝(𝑥)
𝑞(𝑥)

that appears

in the expression for the KL divergence (2.52). Moreover, substituting the optimal

solution 𝑢* in (2.63) gives

ℒ*
𝐷(𝑝, 𝑞) = −1

2
E𝑝(𝑥)

[︂
log

𝑝(𝑥)

𝑝(𝑥) + 𝑞(𝑥)

]︂
− 1

2
E𝑞(𝑥)

[︂
log

𝑞(𝑥)

𝑝(𝑥) + 𝑞(𝑥)

]︂
(2.67)

= −1

2
E𝑝(𝑥)

[︂
− log(2) + log

𝑝(𝑥)
1
2
(𝑝(𝑥) + 𝑞(𝑥))

]︂
− 1

2
E𝑞(𝑥)

[︂
− log(2) + log

𝑞(𝑥)
1
2
(𝑝(𝑥) + 𝑞(𝑥))

]︂
(2.68)

= log(2)− 1

2
𝐷KL

(︀
𝑝(𝑥), 1

2
𝑝(𝑥) + 1

2
𝑞(𝑥)

)︀
− 1

2
𝐷KL

(︀
𝑞(𝑥), 1

2
𝑝(𝑥) + 1

2
𝑞(𝑥)

)︀
(2.69)

53

= log(2)−𝐷JS(𝑝, 𝑞), (2.70)

where𝐷JS(·, ·) is a symmetric divergence function known as Jensen-Shannon divergence.

Using the last equation above, we can re-write the Jensen-Shannon divergence in a

variational form, i.e. as a result of optimization w.r.t. an auxiliary function 𝑢(·):

𝐷JS(𝑝, 𝑞) = log(2)

+ sup
𝑢(·):𝒳→R

1

2
E𝑝(𝑥)[− log(1 + 𝑒−𝑢𝜑(𝑥))] +

1

2
E𝑞(𝑥)[− log(1 + 𝑒𝑢𝜑(𝑥))]. (2.71)

While the direct expression for 𝐷JS can not be evaluated since GANs do not pro-

vide access to the log-likelihood, the variational form can be estimated (at least

approximately) by training the discriminator network 𝑢𝜑.

During training we are interested in minizining a divergence between the model

distribution 𝑝𝜃(𝑥) and the data distribution 𝑝𝑛(𝑥) 1. Using the variational form of JS

divergence, we can write down the divergence minimization as

min
𝜃

max
𝜑

1

2
E𝑝𝜃(𝑥)[− log(1 + 𝑒−𝑢𝜑(𝑥))] +

1

2
E𝑝𝑛(𝑥)[− log(1 + 𝑒𝑢𝜑(𝑥))], (2.72)

which is a nested optimization problem.

The nature of this problem is different from the optimization problems we considered

so far. In both direct mean negative log-likelihood minimization and the ELBO loss

minimization we considered a single objective that was to be minimized w.r.t. all

trainable parameters (only 𝜃 in case of exact models, and 𝜃 and 𝜑 in case of VAEs).

Problem (2.72) can be considered as a nested optimization problem, where for each

value of 𝜃, one first has to solve the inner maximization problem w.r.t. 𝜑, and

then find the value of the that minimizes ̃︀ℒ(𝜃) = max𝜑
1
2
E𝑝𝜃(𝑥)[− log(1 + 𝑒−𝑢𝜑(𝑥))] +

1
2
E𝑝𝑛(𝑥)[− log(1 + 𝑒𝑢𝜑(𝑥))].

Another way to view the problem (2.72) is to think about it as a game — a problem

1Technically the empirical distribution does not have an ordinary density function. For the purpose
of theoretical analysis, the data distribution 𝑝𝑛(𝑥) can be replaced with a smoothed distribution
�̃�𝑛(𝑥) =

1
𝑛

∑︀𝑛
𝑖=1𝒩 (𝑥;𝑥𝑖, 𝜀) obtained by applying the Gaussian noise with very small variance 𝜀 to

data points.

54

that involves two different sets of parameters (players) optimizing different objective

functions (utilities). In the case of (2.72), the two players are the generator parameters

𝜃 and the discriminator parameters 𝜑, the loss (negative utility) functions of the

players (to be minimized) are

ℒ𝐺(𝜃, 𝜑) = E𝑝𝜃(𝑥)[− log(1 + 𝑒−𝑢𝜑(𝑥))] +
1

2
E𝑝𝑛(𝑥)[− log(1 + 𝑒𝑢𝜑(𝑥))], (2.73)

ℒ𝐷(𝜃, 𝜑) = E𝑝𝜃(𝑥)[log(1 + 𝑒−𝑢𝜑(𝑥))] +
1

2
E𝑝𝑛(𝑥)[log(1 + 𝑒𝑢𝜑(𝑥))]. (2.74)

Game (2.73)-(2.74) is a zero-sum game, meaning that loss of one player is exactly

the gain of the other player: ℒ𝐺(𝜃, 𝜑) = −ℒ𝐷(𝜃, 𝜑). If one player decreases their loss

function by 𝛿, the other player suffers an increase of their loss by 𝛿.

We can connect the optimal solution of divergence minimization, i.e. generator

parameters 𝜃* such that 𝑝𝜃* = 𝑝𝑛, to Nash equilibria (a kind of solution) of game

(2.73)-(2.74). Formally, if there exists 𝜃* such that 𝑝𝜃*(𝑥) = 𝑝𝑛(𝑥), ∀𝑥 and there

exists 𝜑* such that 𝑢𝜑*(𝑥) = 0, ∀𝑥 is a constant discriminator function, then (𝜃*, 𝜑*)

together result in a Nash equilibrium for (2.73)-(2.74), meaning that

ℒ𝐺(𝜃*, 𝜑*) ≤ ℒ𝐺(𝜃, 𝜑*) ∀ 𝜃, (2.75)

ℒ𝐷(𝜃*, 𝜑*) ≤ ℒ𝐷(𝜃*, 𝜑) ∀𝜑. (2.76)

In other words, the point (𝜃*, 𝜑*) is such that none of the players 𝜃, 𝜑 can decrease their

respective loss function below ℒ𝐺(𝜃*, 𝜑*), ℒ𝐷(𝜃*, 𝜑*) by making unilateral changes to

their states. See [70, 78] for proof of the result and its generalizations.

While GAN formulation in the form (2.72) involves nested optimization, i.e. the

inner maximization w.r.t. 𝜑 needs to be solved to (near) optimality before 𝜃 can be

updated, the game formulation (2.73)-(2.74) suggests another algorithm where both

players simultaneously make progress by locally decreasing their utilities:⎡⎣𝜃𝑖+1

𝜑𝑖+1

⎤⎦ =

⎡⎣𝜃𝑖
𝜑𝑖

⎤⎦+ 𝜂𝑖

⎡⎣𝑣𝜃(𝜃, 𝜑)

𝑣𝜑(𝜃, 𝜑)

⎤⎦ , 𝑣(𝜃, 𝜑) =

⎡⎣𝑣𝜃(𝜃, 𝜑)

𝑣𝜑(𝜃, 𝜑)

⎤⎦ =

⎡⎣−∇𝜃ℒ𝐺(𝜃, 𝜑)

−∇𝜑ℒ𝐷(𝜃, 𝜑)

⎤⎦ , (2.77)

55

where 𝑣(𝜃, 𝜑) is the negative gradient vector field associated with the game defined by

ℒ𝐺(𝜃, 𝜑), ℒ𝐷(𝜃, 𝜑). The algorithm (2.77) is known as simultaneous gradient descent

(SimGD). Given sufficiently small stepsizes SimGD either enters a limit or converges

to a stationary point, i.e. a point (𝜃, 𝜑) such that 𝑣(𝜃, 𝜑) = 0. In certain cases the

stationary point of the vector field recovers a local Nash equilibrium, which is one way

of formalizing the notion of local solution of the game, a state where neither player

can decrease their loss through a unilateral local change of their state. However, not

all stationary points are local Nash equilibria. We refer the reader to [165, 167, 183]

for analysis of critical points in continuous games and convergence of SimGD.

In practice GANs are trained by procedures similar to SimGD, except that exact

gradient are computationally expensive and stochastic gradients are used instead.

Note that stochastic gradients of the loss functions (2.73)-(2.74) can be estimated by

drawing samples from the model 𝑝𝜃(𝑥) and from the data distribution 𝑝𝑛(𝑥). Often

GAN training algorithms alternate between individual player updates (Alternating

Gradient Descent) instead of updating players’ states simultaneously. It is also a

common practice to introduce individual learning rates for each player and perform

multiple updates for one player before switching to updating the other player.

Above we introduced GANs training as minimization of Jensen-Shannon divergence

in the variational form. Variational estimators or bounds have been derived for

other divergences such as f-divergences [181, 183] and Wasserstein distance [8, 9].

These results inspired variants of GANs, optimizing various probability divergences

[8, 9, 160, 183]. A class of divergences, which are expressed as

𝐷MDD-ℱ(𝑝, 𝑞) = sup
𝑓∈ℱ

(︀
E𝑝(𝑥)[𝑓(𝑥)]− E𝑞(𝑥)[𝑓(𝑥)]

)︀
, (2.78)

where ℱ is a class of functions, are known as maximum mean discrepancy or integral

probability metrics [85].

We conclude this section by introducing Wasserstein distance. The Wasserstein-1

56

distance or the Earth-Mover distance is defined as

𝐷𝑊 (𝑝, 𝑞) = inf
𝛾∈Π(𝑝,𝑞)

E𝛾(𝑥,𝑦)
[︀
‖𝑥− 𝑦‖

]︀
, (2.79)

where Π(𝑝, 𝑞) denotes the set of all joint distributions 𝛾(𝑥, 𝑦) on 𝒳 × 𝒳 whose

marginals are 𝑝 and 𝑞 respectively. The joint distribution 𝛾 can be interpreted as

the transportation plan, i.e. one can think about the value of 𝛾(𝑥, 𝑦) as the amount

of probability mass that must be transported from 𝑥 to 𝑦 in order to transform

distribution 𝑝 into distribution 𝑞. The total mass transported from a given point 𝑥 is∫︀
𝛾(𝑥, 𝑦) 𝑑𝑦 = 𝑝(𝑥) and the total mass transporter to a given point 𝑦 is

∫︀
𝛾(𝑥, 𝑦) 𝑑𝑥 =

𝑞(𝑦). In this interpretation, 𝐷𝑊 (𝑝, 𝑞) is minimal possible total probability mass

transportation cost assuming that the cost of transporting one unit of mass from 𝑥

to 𝑦 is 𝑐(𝑥, 𝑦) = ‖𝑥 − 𝑦‖. The Wasserstein distance is a valid metric on the space

of probability distributions. Note that the Wasserstein distance explicitly takes the

distance between points in the space 𝒳 into account, while KL and JS divergences

are expressed in terms of the density ratios 𝑝(𝑥)
𝑞(𝑥)

, 𝑝(𝑥)
1
2
(𝑝(𝑥)+𝑞(𝑥))

.

Practical approximation of the Wasserstein distance in the form (2.79) involves

solving a complex minimization problem over joint probability distributions 𝛾 ∈ Π(𝑝, 𝑞).

However, using the Kantorovich-Rubinstein duality [252], the Wasserstein distance

can be re-written as

𝐷𝑊 (𝑝, 𝑞) = sup
𝑓 :‖𝑓‖𝐿≤1

E𝑓(𝑥)[𝑓(𝑥)]− E𝑞(𝑥)[𝑓(𝑥)], (2.80)

where the supremum is taken over all the 1-Lipschitz functions 𝑓 : 𝒳 → R, |𝑓(𝑥)−
𝑓(𝑦)| ≤ ‖𝑥− 𝑦‖, ∀𝑥, 𝑦 ∈ 𝒳 . This representation inspires the min-max Wasserstein

GAN (WGAN) game [9]

min
𝜃

max
𝜑

E𝑝𝜃(𝑥)[𝑓𝜑(𝑥)]− E𝑝𝑛(𝑥)[𝑓𝜑(𝑥)], (2.81)

where the Wasserstein discriminator 𝑓𝜑 need to be parameterized (or regularized) to

ensure that 𝑓𝜑 has a bounded Lipschitz norm. In practice this can be achieved with

57

weight clipping [9], gradient penalties [8], or spectral normalization layers [171].

EBMs: Maximum Likelihood

The training methods we considered so far relied on the direct access to the log-

likelihood log 𝑝𝜃(𝑥) or direct mechanisms of drawing samples from the model �̂� ∼ 𝑝𝜃(𝑥).

Energy-based models parameterize both the log-likelihood function and the generative

process implicitly through the energy function 𝐸𝜃(𝑥) (2.9)-(2.10).

Given a dataset 𝒟𝑛 the mean negative log-likelihood (2.49) for an energy-based

model (2.9)-(2.10) is

ℒMNLL(𝜃) = E𝑝𝑛(𝑥)[𝐸𝜃(𝑥)]+log𝑍𝜃 = E𝑝𝑛(𝑥)[𝐸𝜃(𝑥)]+log

(︂∫︁
exp(−𝐸𝜃(𝑥)) 𝑑𝑥

)︂
. (2.82)

While the first term and its gradient can be estimated by drawing samples from the

dataset and evaluating the energy function, the second term involves an intractable

integral.

One way of estimating the gradient ∇𝜃ℒMNLL(𝜃) is based on the fact [see e.g.,

230] that the gradient ∇𝜃 log𝑍𝜃 of the logarithm of the normalizing constant can be

expressed as

∇𝜃 log𝑍𝜃 = E𝑝𝜃(𝑥)[−∇𝜃𝐸𝜃(𝑥)], (2.83)

where the expectation is computed over the model distribution 𝑝𝜃(𝑥).

Substituting the last expression in the mean negative log-likelihood loss and

differentiating w.r.t. 𝜃 gives

∇𝜃ℒMNLL(𝜃) = E𝑝𝑛(𝑥)[∇𝐸𝜃(𝑥)]− E𝑝𝜃(𝑥)[∇𝜃𝐸𝜃(𝑥)]. (2.84)

This expression implies that maximum likelihood training in energy-based models can

be performed by estimating the gradient (2.84) via drawing samples from the data

distribution 𝑝𝑛(𝑥) and the model distribution 𝑝𝜃(𝑥), and evaluating the gradient of

the energy function. However, drawing samples from the model distribution 𝑝𝜃(𝑥) is

not straightforward. There is a family of training methods for EBMs that are based

58

on approximating the model distribution with Markov Chain Monte Carlo (MCMC)

procedures. One early algorithm of this kind is Contrastive Divergence proposed by

Hinton [97]. More recent techniques have been developed in [61, 182, 263]. We refer

the reader to [230] for a more detailed review of EBM training techniques.

EMBs and Diffusion Models: Denoising Score Matching

One way to avoid the need to estimate the normalizing constant in the energy-based

models is to focus on the score function — the gradient of the log-density w.r.t. input 𝑥:

∇𝑥 log 𝑝𝜃(𝑥) = ∇𝑥(−𝐸𝜃(𝑥)− log𝑍𝜃) = −∇𝑥𝐸𝜃(𝑥), (2.85)

which does not depend on 𝑍𝜃 (constant as a function of 𝑥). Instead of measuring the

discrepancy between distributions in terms of likelihood functions, one can use score

functions as a basis for comparison. Fisher divergence is a divergence function based

on this principle:

𝐷𝐹 (𝑝, 𝑞) = E𝑝(𝑥)
[︂

1

2

⃦⃦
∇𝑥 log 𝑝(𝑥)−∇𝑥 log 𝑞(𝑥)

⃦⃦2]︂
. (2.86)

The methods based on score function discrepancy are known as score matching [106].

Naturally, one might want to train the model 𝑝𝜃(𝑥) by minimizing the Fisher

divergence 𝐷𝐹 (𝑝𝑛, 𝑝𝜃) as the estimation of the expectation in (2.86) requires only the

samples from the data distribution 𝑝𝑛(𝑥). However, for 𝑝𝑛, an empirical distribution,

the log of the density (and its gradient) is poorly behaved log 𝑝𝑛(𝑥) is discontinuous

and is negative-infinity for 𝑥 /∈ 𝒟𝑛. One way to alleviate this problem is to consider a

smoothed version of the data distribution 𝑞(𝑥) =
∫︀
𝑞(𝑥|𝑥0)𝑝𝑛(𝑥0)𝑑𝑥0, where 𝑞(𝑥|𝑥0) is

a smooth noising kernel (e.g. Gaussian noise 𝑞(𝑥|𝑥0) = 𝒩 (𝑥;𝑥0, 𝜎
2𝐼)).

Vincent [253] has shown that estimation of 𝐷𝐹 (𝑞(𝑥), 𝑝𝜃(𝑥)) is tractable since the

divergence can be represented as

𝐷𝐹 (𝑞(𝑥), 𝑝𝜃(𝑥)) = E𝑞(𝑥)
[︂

1

2

⃦⃦
∇𝑥 log 𝑞(𝑥)−∇𝑥 log 𝑝𝜃(𝑥)

⃦⃦2]︂ (2.87)

59

= E𝑝𝑛(𝑥0)E𝑞(𝑥|𝑥0)
[︂

1

2

⃦⃦
∇𝑥 log 𝑞(𝑥|𝑥0)−∇𝑥 log 𝑝𝜃(𝑥)

⃦⃦2]︂
+ 𝐶, (2.88)

where 𝐶 is a constant which does not depend on 𝜃 and does not affect the optimization.

Estimation of (2.88) requires drawing samples �̂�0 ∼ 𝑝𝑛(𝑥0), �̂� ∼ 𝑞(𝑥|𝑥0 = �̂�0), and

evaluating the gradient of the log of the noising kernel ∇𝑥 log 𝑞(𝑥|𝑥0) and the score of

the model ∇𝑥 log 𝑝𝜃(𝑥). Therefore, the noising kernel 𝑞(𝑥|𝑥0) is required to provide

a simple way of evaluating the gradient ∇𝑥 log 𝑞(𝑥|𝑥0). Note that minimization of

𝐷𝐹 (𝑞(𝑥), 𝑝𝜃(𝑥)) will lead to 𝑝𝜃(𝑥) matching 𝑞(𝑥) not the original data distribution

𝑝𝑛(𝑥), so when choosing the noising kernel 𝑞(𝑥|𝑥0) one must ensure that the noise

introduced by 𝑞(𝑥|𝑥0) to 𝑝𝑛(𝑥) does not distort the original distribution excessively.

Substituting the Gaussian noising kernel 𝑞(𝑥|𝑥0) = 𝒩 (𝑥;𝑥0, 𝜎
2𝐼) or equivalently

𝑥 = 𝑥0 + 𝜎𝜀, 𝜀 ∼ 𝒩 (𝜀; 0, 𝐼) and the EBM 𝑝𝜃(𝑥) in (2.88) and omitting multiplicative

and additive constants gives

ℒDSM(𝜃) = E𝑝𝑛(𝑥)E𝒩 (𝜀;0,𝐼)

[︂⃦⃦⃦
∇𝑥𝐸𝜃(𝑥+ 𝜎𝜀)− 𝜀

𝜎2

⃦⃦⃦2]︂
. (2.89)

Assuming that there exists 𝜃* such that 𝑝*𝜃(𝑥) = 𝑞(𝑥), ∀𝑥, the parameters 𝜃* constitute

a minimizer of the denoising score matching loss (2.89) and recover the score function

∇𝑥 log 𝑝𝜃*(𝑥) = −∇𝑥𝐸𝜃*(𝑥) = ∇𝑥 log

(︂∫︁
𝒩 (𝑥|𝑥0;𝜎2𝐼)𝑝𝑛(𝑥0) 𝑑𝑥0

)︂
. (2.90)

In Section 2.2.1, we introduced diffusion model parameterization based on a

learnable approximation 𝑢𝜃(𝑧, 𝑡) to the time-dependent score function ∇𝑧𝑡 log 𝑞(𝑧𝑡)

(2.37). Note that this diffusion score (2.37) is exactly the solution (2.90) of the

minimization of the denoising score matching loss (2.89) for the time-dependent noising

kernel 𝑞(𝑧𝑡|𝑧0) = 𝒩 (𝑧𝑡; 𝑧0, 𝜎
2(𝑡)𝐼). Thus, training in diffusion models can be performed

via time-dependent denoising score matching. Karras et al. [117] propose to re-

parameterize the score function approximation 𝑢𝜃(𝑧, 𝑡) = (𝐷𝜃(𝑧, 𝜎(𝑡))−𝑥)/𝜎2(𝑡), where

𝐷𝜃(𝑧, 𝜎(𝑡)) is learnable “denoiser” network with input and output pre-conditioning

60

(see [117] for details), and train the denoiser by minimizing the denoising loss

ℒdenoising(𝜃) = E𝑝train(𝜎)E𝑝𝑛(𝑥0)E𝒩 (𝜀;0,𝐼)

[︀
𝜆(𝜎)‖𝐷𝜃(𝑥0 + 𝜎𝜀, 𝜎)− 𝑥0‖2

]︀
, (2.91)

where 𝑝train(𝜎) is a distribution over noise levels 𝜎 ∈ [𝜎min, 𝜎max], and 𝜆(·) :

[𝜎min, 𝜎max]→ (0,∞) is a positive weighting function. Given the optimal denoiser 𝐷𝜃*

the score can be approximated as

∇𝑧𝑡 log 𝑞𝑡(𝑧𝑡) ≈ 𝑢𝜃*(𝑧, 𝑡) =
𝐷𝜃*(𝑧𝑡, 𝜎(𝑡))− 𝑧𝑡

𝜎2(𝑡)
. (2.92)

CNFs: Flow Matching

Continuous Normalizing Flows provide tractable mechanisms for estimating the log-

likelihood via simulation of the ODE (2.26). It is possible to train CNFs via maximum

likelihood estimation. However, log-likelihood estimation involves numerical integration

of the ODE. Differentiation of the log-likelihood can be done either by differentiating

from the ODE solver or estimating the gradient as a numerical solution of the adjoint

ODE [38, 198]. Both the numerical integration of ODEs and estimation of the trace

of the Jacobian Tr
(︀
𝜕𝑢𝜃
𝜕𝑧

(𝑧(𝑡), 𝑡)
)︀

either incur high computational costs or introduce

approximation errors.

A recent line of work [5, 6, 148, 152, 243] proposed an alternative way of training

CNFs. The goal of CNF training is to find probability flow {𝑝𝜃,𝑡(𝑧)}𝑇𝑡=0 induced by the

vector field 𝑢𝜃(𝑧, 𝑡) such that the terminal time distribution 𝑝𝜃,𝑇 (𝑧) approximates the

data distribution 𝑝𝑛(𝑥) as closely as possible. Suppose we construct a probability flow

{𝑞𝑡(𝑧)}𝑇𝑡=0 which has fixed end-point distributions 𝑞0 = 𝑝0 and 𝑞𝑇 = 𝑝𝑛 and satisfies

the continuity equation for a known vector field 𝑣(𝑧, 𝑡)

𝑞0(𝑧) = 𝑝0(𝑧), 𝑞𝑇 (𝑧) = 𝑝𝑛(𝑧),
𝜕

𝜕𝑡
𝑞𝑡(𝑧) = −(∇𝑧 · (𝑣 · 𝑞𝑡))|𝑧, 0 < 𝑡 < 𝑇, 𝑧 ∈ R𝑛. (2.93)

Then, we can formalize training of the CNF probability flow as matching of the

prescribed probability flow {𝑞𝑡(𝑧)}𝑇𝑡=0. In particular, if one can draw samples from

𝑞𝑡(𝑧) and evaluate the vector field 𝑣(𝑧, 𝑡), then CNF can be trained with the flow

61

matching objective

ℒFM(𝜃) = E𝒰(𝑡;[0,𝑇])E𝑞𝑡(𝑧)
[︀
‖𝑣(𝑧, 𝑡)− 𝑢𝜃(𝑧, 𝑡)‖2

]︀
, (2.94)

where 𝒰(𝑡; [0, 𝑇]) is the uniform distribution over time 𝑡 ∈ [0, 𝑇]. The main challenge

in applying this training procedure lies in the construction of a probability flow 𝑞𝑡(𝑧)

and the corresponding vector field 𝑣(𝑧, 𝑡) which would admit tractable sampling and

vector field evaluation. Below we consider two ways of constructing such probability

flows and describe the corresponding training objectives.

Lipman et al. [148], Tong et al. [243] proposed a method for constructing probability

flows connecting given pair of distribution using a mixture of simpler probability paths.

The construction starts from a conditional probability flow 𝑞𝑡(𝑧|𝛼) that varies with

some conditioning variable 𝛼 and that is generated by a conditional vector field

𝑣(𝑧, 𝛼, 𝑡). If the conditional variable 𝛼 has the distribution 𝑞(𝛼), then by marginalizing

over 𝛼 gives a mixture probability flow (or marginal probability flow):

𝑞𝑡(𝑧) =

∫︁
𝑞𝑡(𝑧|𝛼)𝑞(𝛼) 𝑑𝛼. (2.95)

One can show (see [148, 243]) that marginal probability flow is generated by the vector

field

𝑣(𝑧, 𝑡) =

∫︁
𝑣(𝑧, 𝛼, 𝑡)

𝑞𝑡(𝑧|𝛼)𝑞(𝛼)

𝑞𝑡(𝑧)
𝑑𝛼 = E𝑞𝑡(𝛼|𝑧)[𝑣(𝑧, 𝛼, 𝑡)]. (2.96)

By substituting this expression for the marginal vector filed in the expression for the

flow matching loss (2.94), simplifying the expression, and omitting the constants that

do not affect the optimization, one can arrive at the conditional flow matching loss

[148, 243]:

ℒCFM(𝜃) = E𝒰(𝑡;[0,𝑇])E𝑞(𝛼)E𝑞𝑡(𝑧|𝛼)
[︀
‖𝑣(𝑧, 𝛼, 𝑡)− 𝑢𝜃(𝑧, 𝑡)‖2

]︀
. (2.97)

This objective can be optimized and its minimization leads to our goal of CNF training

given that

62

• the conditional probability flow 𝑞𝑡(𝑧|𝛼) is generated by the conditional vector

field 𝑣(𝑧, 𝛼, 𝑡) from initial condition 𝑞0(𝑧|𝛼);

• 𝑞0(𝑥) =
∫︀
𝑞0(𝑥|𝛼)𝑞(𝛼) is equal to desired prior distribution 𝑝0(𝑥);

• 𝑞𝑇 (𝑥) =
∫︀
𝑞0(𝑥|𝛼)𝑞(𝛼) is equal to the target data distribution 𝑝𝑛(𝑥);

• drawing samples from 𝑞𝑡(𝑧|𝛼) is tractable;

• evaluation of 𝑣(𝑧, 𝛼, 𝑡) is tractable.

Lipman et al. [148], Tong et al. [243] constructed several conditional probability flows

and corresponding vector fields. Moreover, these works have shown that certain choices

recover diffusion probability flows as well as dynamic optimal transport probability

flows, and Schrödinger bridge probability flows. Note that the relationship between the

marginal flow matching objective (2.94) and the conditional flow matching objective

(2.97) is similar to the relationships between the denoising score matching objective

with the score of the marginal distribution (2.87) and the denoising score matching

objective with the conditional score (2.89): learning by regression to the conditional

vector field is simpler that regressing to the marginal vector field.

Albergo et al. [5], Albergo and Vanden-Eijnden [6] propose another way of con-

structing probability paths and learning the associated vector fields. Their approach

is based on a “stochastic interpolants”. Given two artibtraty probability distributions

𝑞0(𝑧) and 𝑞𝑇 (𝑧), one can construct a probability flow {𝑞𝑡(𝑧)}𝑇𝑡=0 that interpolates

between 𝑞0(𝑧) and 𝑞𝑇 (𝑧) by drawing samples 𝑧𝑡 at time 𝑡 ∈ [0, 𝑇] as

𝑧𝑡 = 𝐼(𝑡, 𝑧0, 𝑧𝑇) + 𝛾(𝑡)𝜀, 𝑧0 ∼ 𝑞0(𝑧), 𝑧𝑇 ∼ 𝑞𝑇 (𝑧), 𝜀 ∼ 𝒩 (𝜀; 0, 𝐼), 𝑡 ∈ [0, 𝑇], (2.98)

where

• 𝐼 : [0, 𝑇]×R𝑑×R𝑑 → R𝑑 is a smooth interpolant function such that 𝐼(0, 𝑧0, 𝑧𝑇) =

𝑧0 and 𝐼(𝑇, 𝑧0, 𝑧𝑇) = 𝑧𝑇 ,

• 𝛾(𝑡) is a standard deviation function such that 𝛾(0) = 𝛾(𝑇) = 0, 𝛾(𝑡) > 0, 𝑡 ∈
(0, 𝑇) and 𝛾𝑡(·) ∈ 𝐶2([0, 𝑇]),

63

• 𝑧0, 𝑧𝑇 , 𝜀 are independently drawn from respective distributions 2.

Albergo et al. [5] show that the stochastic interpolant probability flow is generated by

the vector field 𝑢*(𝑧, 𝑡)

𝑢*(𝑧, 𝑡) = E𝑧0,𝑧𝑇 ,𝜀
[︂
𝜕

𝜕𝑡
𝐼(𝑡, 𝑧0, 𝑧𝑇) +

𝜕

𝜕𝑡
𝛾(𝑡)𝜀

⃒⃒⃒⃒
𝑧𝑡 = 𝑧

]︂
, (2.99)

which can be recovered by minimization of the quadratic objective

ℒSI(𝜃) = E𝒰(𝑡;[0,𝑇])E𝑞0(𝑧0)E𝑞𝑇 (𝑧𝑇)E𝒩 (𝜀;0,𝐼)

[︃
1

2
‖𝑢𝜃(𝐼(𝑡, 𝑧0, 𝑧𝑇), 𝑡)‖2 −

(︂
𝜕

𝜕𝑡
𝐼(𝑡, 𝑧0, 𝑧𝑇) +

𝜕

𝜕𝑡
𝛾(𝑡)𝜀

)︂
· 𝑢𝜃(𝐼(𝑡, 𝑧0, 𝑧𝑇), 𝑡)

]︃
. (2.100)

By construction, sampling from all distributions and evaluation of all terms appear-

ing in (2.100) can be carried out exactly. Albergo et al. [5] provide details of the

mathematical analysis and constructive examples of stochastic interpolatns, discuss

connections to flow matching methods and diffusion models, and describe ODE and

SDE sampling procedures for the stochastic interpolant probability flows.

GFlowNets: Trajectory Balance

The conceptual approach to GFlowNet training is similar to the approaches developed

for conditional normalizing flows. In fact, the two frameworks have deep connections

[134, 159, 273]: GFlowNets can be interpreted as discrete analogues of CNFs or

diffusion models; CNFs and diffusion can be derived from an extension of GFlowNet to

continuous-state-action spaces [134]. The GFlowNet probability flow recursion (2.15)

and its variants play the same role in the analysis of discrete GFlowNet probability

flows as the Liouville equation / continuity equation (2.22) plays in the analysis

of deterministic continuous probability flow and the Fokker-Planck / Kolmogorov

Forward equation (2.32) plays in the analysis of stochastic continuous probability flows.

2For the sake of brevity we are omitting some technical conditions on the 𝐼 and 𝛾. We refer the
reader to Albergo et al. [5] for details.

64

In fact, all of these equations can be interpreted through the lens of the principle of

(probability) mass conservation.

Before we describe training objectives for GFlowNet training, let us introduce the

notion of target distribution for GFlowNets. In GFlowNet literature, it is common to

specify the target distribution in terms of the reward function 𝑅 : 𝒳 → [0,∞), which

maps the terminal states 𝑥 to non-negative reward functions 𝑅(𝑥) ≥ 0. It is assumed

that the reward function is available and can be evaluated efficiently for any terminal

state. The target distribution 𝑝*(𝑥) over terminal states 𝑥 ∈ 𝒳 is defined as

𝑝*(𝑥) =
1

𝑍
𝑅(𝑥), 𝑍 =

∑︁
𝑥′∈𝒳

𝑅(𝑥′), (2.101)

where 𝑍 is a normalizing constant. The reward function defines the unnormalized

probability mass function of 𝑝*(𝑥). While it is standard to describe training in terms

of the rewards, this description does not prevent one from training a GFlowNet given

a dataset of examples 𝒟𝑛 = {𝑥𝑖}𝑛𝑖=1. Given a dataset, one can define an empirical

reward function and the empirical distribution

𝑅𝑛(𝑥) =
𝑛∑︁
𝑖=1

𝐼[𝑥 = 𝑥𝑖], 𝑝𝑛(𝑥) =
1

𝑛
𝑅𝑛(𝑥), (2.102)

where 𝐼[·] is the indicator function. Below, we describe GFlowNet training algorithms

using the reward function 𝑅(𝑥).

Given a parameterized GFlowNet policy 𝑝𝜃(𝑠′|𝑠) the likelihood of a given terminal

𝑥 is given by (2.14). Most interesting applications of GFlowNets involve DAG (𝒮,𝒜)

with a combinatorial number of states and/or actions (usually, the DAG is specified

implicitly). In this case, the summation over all trajectories Σ𝜏∈𝒯𝑠0,𝑥 terminating

at 𝑥 in (2.14) can not be carried out in a reasonable time (the number of paths in

DAGs with big branching factor is combinatorial in the number of states). Using

the recursion (2.15), one could evaluate 𝑝(𝑥) via dynamic programming which would

take time and space proportional to |𝒮|+ |𝒳 | which is also prohibitively expensive in

GFlowNet problems such as generation of molecular graphs from fragments [16].

65

Instead of pursuing maximum likelihood training, we could specify a target proba-

bility flow on a DAG and train the policy by matching this flow. Given access to the

rewards 𝑅(𝑥) of terminal states, we can construct a target probability flow 𝑞(𝑠) by

introducing a backward policy 𝑞𝐵(𝑠*|𝑠) which for a given state 𝑠 gives a probability

distribution over all predecessor states 𝑠* : (𝑠* → 𝑠) ∈ 𝒜. A simple example of a

backward policy is the uniform policy that equally distributes the mass between all

predecessor states 𝑠* of a given state. Similar to the model probability flow (2.13),

(2.15) induced by the forward policy 𝑝𝜃(𝑠′|𝑠), we can write the backward probability

flow 𝑞(𝑠) as

𝑞(𝑠) =
∑︁
𝑥∈𝒳

⎡⎣𝑝*(𝑥)
∑︁
𝜏∈𝒯𝑠,𝑥

|𝜏 |−1∏︁
𝑡=0

𝑞𝐵(𝑠𝑡|𝑠𝑡+1)

⎤⎦
=

1

𝑍

∑︁
𝑥∈𝒳

⎡⎣𝑅(𝑥)
∑︁
𝜏∈𝒯𝑠,𝑥

|𝜏 |−1∏︁
𝑡=0

𝑞𝐵(𝑠𝑡|𝑠𝑡+1)

⎤⎦ , (2.103)

and in the recurrent form as

𝑞(𝑠) =
∑︁

𝑠′:(𝑠→𝑠′)∈𝒜

𝑞(𝑠′)𝑞𝐵(𝑠|𝑠′), ∀𝑠 ∈ 𝒮 ∖𝒳 , 𝑞(𝑥) = 𝑝*(𝑥) =
1

𝑍
𝑅(𝑥), ∀𝑥 ∈ 𝒳 . (2.104)

Starting from the definition of GFlowNet probability flows, one can show [19] that

if the forward 𝑝𝜃(𝑠) and the backward probability flows 𝑞(𝑠) are equal, then for any

edge (𝑠→ 𝑠′) ∈ 𝒜 the probability of observing (𝑠→ 𝑠′) on a trajectory drawn from

the probability flow is the same under both forward and backward flows:

𝑞(𝑠→ 𝑠′) = 𝑞(𝑠)𝑝𝜃(𝑠
′|𝑠) = 𝑞𝐵(𝑠|𝑠′)𝑞(𝑠′). (2.105)

The above equation is known as the ”detailed balance” equation, and it inspired several

training objectives for GFlowNets [16, 158]. In this review, we will focus only on the

trajectory balance loss, which we present below.

Given a trajectory 𝜏 = (𝑠0 → . . .→ 𝑠𝑛 = 𝑥) on a GFlowNet DAG, we can write

down the detailed balance equation (2.105) for all edges and, after simple algebraic

66

manipulations, arrive at a trajectory balance condition

|𝜏 |−1∏︁
𝑡=0

𝑝𝜃(𝑠𝑡+1|𝑠𝑡) =
1

𝑍
𝑅(𝑥)

|𝜏 |−1∏︁
𝑡=0

𝑞𝐵(𝑠𝑡|𝑠𝑡+1), (2.106)

where we assumed that both probability flows generate the terminal distribution

𝑝*(𝑥) = 1
𝑍
𝑅(𝑥). This constraint is satisfied for all trajectories if and only if the policies

𝑝𝜃(𝑠
′|𝑠) and 𝑞𝐵(𝑠|𝑠′) generate the same probability flows [19, 158]. This observation

inspires a training method based on the minimization of the trajectory balance loss

ℒTB(𝜃) = E𝜏∼̃︀𝑝(𝜏)
⎡⎣(︃log

𝑍𝜃
∏︀|𝜏 |−1

𝑡=0 𝑝𝜃(𝑠𝑡+1|𝑠𝑡)
𝑅(𝑥)

∏︀|𝜏 |−1
𝑡=0 𝑞𝐵(𝑠𝑡|𝑠𝑡+1)

)︃2
⎤⎦ , (2.107)

where the expectation can be taken over any probability distribution ̃︀𝑝(𝜏) over trajecto-

ries, which assign positive probabilities to all trajectories, and 𝑍𝜃 is a scalar parameter

that is learned alongside the parameters of the policy network 𝑝𝜃. Minimization of

ℒTB(𝜏) to 0 leads to learning the probability flow that generates the desired terminal

distribution 𝑝*(𝑥) ∝ 𝑅(𝑥) [19, 158]. Malkin et al. [158] propose to use the model

trajectory distribution 𝑝̃︀𝜃(𝜏) as ̃︀𝑝(𝜏), where ̃︀𝜃 is a variable of the current parameters

𝜃 or a moving average of recent values of 𝜃 3. Drawing trajectory samples from

𝑝̃︀𝜃(𝜏) can be accomplished simply by unrolling the policy 𝑝̃︀𝜃(𝑠′|𝑠). In theory, any

strictly positive distribution over trajectories is a valid choice; however, in practice,

the training dynamics of the model strongly depend on the trajectories sampled during

training. If a dataset 𝒟𝑛 of terminal samples is available, one can generate trajectories

by following the backward policy 𝑞𝐵(𝑠|𝑠′) starting from a terminal state �̂� ∼ 𝑝𝑛(𝑥)

drawn from the dataset. We note that [158] propose to parameterize both the forward

and the backward policies 𝑝𝜃(𝑠′|𝑠) and 𝑝𝜃,𝐵(𝑠|𝑠′) to have more flexibility in the choice

of the target probability flow (generated by the backward policy). In this case, the

parameters of both policies can still be learned with the trajectory balance loss (2.107).

3We distinguish between 𝑝̃︀𝜃 used in the base of the expectation in (2.107) and the policy 𝑝𝜃
appearing inside the expectation, as Malkin et al. [158] point out that is not necessary to account for
the influence of trajectory generation distribution on 𝜃 when computing gradients of ℒTB.

67

2.2.3 Deep Probabilistic Models: Inference

After a deep probabilistic model has been specified and trained, the final model

𝑝𝜃(𝑥), 𝑥 ∈ R𝑑 (here 𝜃 denotes the final value of the model parameters) can be used to

ask questions related to staistical dependencies between random variables {[𝑥]𝑖}𝑑𝑖=1.

This section provides a brief overview of some inference techniques for deep probabilistic

models.

Likelihood evaluation. Given a model 𝑝𝜃(𝑥), one might want to evaluate the

likelihood 𝑝𝜃(𝑥′) or log-likelihood log 𝑝𝜃(𝑥
′) at various points 𝑥′.

When discussing training in Section 2.2.2, we mentioned that in deep discriminative

models, autoregressive models, and normalizing flows model parameterization enables

exact evaluation of likelihood / log-likelihood. CNFs and diffusion models (in ODE

form) enable approximate evaluation of log-likelihood via numerical simulation of

ODEs of type (2.26).

GFlowNets do not provide direct mechanisms for likelihood evaluation. In principle

likelihood can be evaluated by direct summation over trajectories (2.14), or via dynamic

programming (2.15) or sampling.

Energy-based models by construct enable direct evaluation of unnormalized like-

lihood and unnormalized log-likelihood (negative enegergy). Estimation of exact

likelihood, requires approximation of the normalizing constant 𝑍𝜃 =
∫︀

exp(−𝐸𝜃(𝑥)) 𝑑𝑥.

In VAEs, exact likelihood evaluation involves an intractable integral (2.5) over

latent variable 𝑧, which can be estimated with samples. As we discussed in Secion

2.2.2, the ELBO (2.57) provides a lower bound on the log-likelihood and can be

estimated with sampling. There is a line of work on developing upper bounds (e.g.,

[233]) and tighter lower bounds (e.g.,[35]) on log-likelihood for VAEs.

GANs do not provide exact mechanisms for likelihood evaluation and compared to

VAEs do not provide an encoder model that can be used to estimate a lower bound

on log-likelihood. One can use the relation between the optimal discriminator and the

density ratio (2.65), to estimate the ratio of densities between the model distribution

𝑝𝜃(𝑥) and a given background distribution 𝑞(𝑥).

68

Generation (Sampling). Drawing samples �̂� ∼ 𝑝𝜃(𝑥) allows one to generate

examples that “resemble” examples from the training data 𝒟𝑛 in some aspects (at

least in statistical dependencies between coordinates {[𝑥]𝑖}𝑑𝑖=1 as represented by the

model 𝑝𝜃(𝑥)). Many approximate inference algorithms (and training procedures) rely

on sampling from the model as a subroutine.

GANs, VAEs, Normalizing Flows, CNFs, diffusion models, GFlowNets provide

direct mechanisms for drawing samples. In the case of CNFs and diffusion models

numerical integration of ODEs / SDEs is required. Sampling from deep discrimina-

tive models, and deep autoregressive Models typically involves sampling from low-

dimensional distributions 𝑝(𝑦|𝑥) or 𝑝(𝑥𝑖|𝑥1, . . . 𝑥𝑖−1), which are amenable to sampling

techniques such as inverse CDF sampling, importance sampling, rejection sampling,

Gibbs sampling and others (see e.g. Section 29 in [157]).

Among the models we discussed, energy-based models are the only model family

where the parameterization is not directly connected to sampling. Since EBMs provide

access to the unnormalized log-likelihood −𝐸𝜃(𝑥) = log 𝑝𝜃(𝑥) + log𝑍𝜃 and the score

function −∇𝑥𝐸𝜃(𝑥) = ∇𝑥 log 𝑝𝜃(𝑥), the samples can be generated with sampling

techniques which only require access to score and/or unnormalized log-likelihood.

Gradient-based Markov Chain Monte Carlo algorithms [65, 83, 177, 188] is a family

of efficient algorithms of this kind. For example, Langevin MCMCM constructs a

iterative process

𝑥𝑡+1 = 𝑥𝑡 +
1

2
𝜀2∇𝑥 log 𝑝𝜃(𝑥𝑡) + 𝜀𝑧𝑖, 𝑖 = 0, 1, . . . , 𝑇, (2.108)

where 𝑥0 is an initial sample drawn from a simple prior distribution, 𝜀 > 0, and

{𝑧𝑖} are i.i.d. samples from the standard Gaussian distribution. When 𝜀 → 0 the

stationary distribution of this process is guaranteed to recover 𝑝𝜃(𝑥) (under some

regularity conditions). For large enough 𝑇 , 𝑥𝑇 can be used as sample from the data

distribution. In practice one have to use finite step sizes 𝜀 > 0 which introduces a

discretization error, which could be corrected with a Metropolis-Hastings rejection

procedure [89]. Langevin MCMC with Metropolis-Hastings correction is known as

69

Metropolis-Adjusted Langevin Algorithm. We refer the reader to [230] for a review of

MCMC-based sampling techniques for EBMs in the context of maximum-likelihood

training, and to Sections 29, 30, and 41 in [157] for introduction to gradient-based

Sequential Monte Carlo methods.

Conditional (Controllable) Generation. After the model 𝑝𝜃(𝑥) was trained, one

might want to generate samples �̂� that satisfy certain conditions or draw samples

that simultaneously have high likelihood under 𝑝𝜃(𝑥) and high value of some external

scoring function. We refer to such tasks as controllable generation. This task can be

formalized as drawing samples from a modified version of the learned distribution.

One way to derive new distributions from 𝑝𝜃(𝑥) is via conditioning. Starting from

𝑝𝜃(𝑥), one can consider associated conditional distributions

𝑝(𝑥𝐼 |𝑥𝐼) =
𝑝𝜃(𝑥𝐼 , 𝑥𝐼)

𝑝𝜃(𝑥𝐼)
, 𝑝(𝑥|𝑦) =

𝑝𝜃(𝑥)𝑝(𝑦|𝑥)∫︀
𝑝𝜃(𝑥′)𝑝(𝑦|𝑥′)𝑑𝑥′

, (2.109)

where 𝐼 ⊂ {1, . . . , 𝑑}, 𝑥𝐼 = [𝑥𝑖]𝑖∈𝐼 denotes a subset of dimensions of 𝑥 ∈ R𝑑,

𝐼 = {1, . . . , 𝑑} ∖ 𝐼, and 𝑦 denotes an external random variable with a specified

conditional likelihood 𝑝(𝑦|𝑥). Sampling from the conditional distribution 𝑝(𝑥𝐼 |𝑥𝐼) can

be interpreted as filling the values of the missing components 𝑥𝐼 of 𝑥 given the subset

of observed components 𝑥𝐼 (data imputation, completion, inpating). Conditional

generation from 𝑝(𝑥|𝑦) can be interpreted as generation of samples that simultaneously

have high likelihood under model and agree with observation 𝑦. Here we interpret 𝑦

as a stochastic observation (function) of 𝑥 (think of 𝑦 ∼ 𝑝(𝑦|𝑥) as a generalization of

𝑦 = 𝑓(𝑥)). We can also re-interpret sampling from 𝑝(𝑥|𝑦) by re-writing

𝑝(𝑥|𝑦) ∝ exp (log 𝑝𝜃(𝑥) + 𝑓𝑦(𝑥)) , 𝑓𝑦(𝑥) = log 𝑝(𝑦|𝑥), (2.110)

and observing that up-to a normalizing constant (independent of 𝑥) the conditional

log-likelihood log 𝑝(𝑥|𝑦) is equal to the sum of the model likelihood log 𝑝𝜃(𝑥) and a

“scoring function” 𝑓𝑦(𝑥) = log 𝑝(𝑦|𝑥). This function 𝑓𝑦(𝑥) = log 𝑝(𝑦|𝑥) can encode

relative preference between different points 𝑥 or measure the extent to which 𝑥 agrees

70

with certain constraints.

One way to build a model capable of controllable generation is to prescribe the

desired controls at the training time and train the model to perform controllable

generation, e.g. train a conditional generative model 𝑝𝜃(𝑥|𝑦) on a dataset of pairs

(𝑥𝑖, 𝑦𝑖) and introduce 𝑦 as an additional input to neural networks in the model. In

many applications one might want to re-use and control a pre-trained unconditional

model 𝑝𝜃(𝑥).

Autoregressive models support conditional generation of sequence suffix 𝑥𝑖+1, . . . , 𝑥𝑑

given observed prefix 𝑥1, . . . , 𝑥𝑖 by design. For example a language model trained to

generate text documents, can generate a plausible continuation of a text given a few

starting words (sentences, paragraphs, ...).

Energy-based models support conditional generation via MCMC sampling with

modified energy functions − log 𝑝(𝑥𝐼 |𝑥𝐼 = �̂�𝐼) = 𝐸𝜃(𝑥)|𝑥𝐼=�̂�𝐼 + 𝐶 or − log 𝑝(𝑥|𝑦) =

𝐸𝜃(𝑥)− log 𝑝(𝑦|𝑥) + 𝐶.

Research on design choices and training objectives for training conditional GANs

and VAEs supporting various control mechanisms (specified at training time) received

significant attention (e.g. [169], [116], [170], [107]). There are also works addressing

contional generation with pre-training GANs [163] and VAEs [88] by learning a

condtional encoder 𝑞(𝑧|𝑦) which maps 𝑦 to a distribution of latent codes 𝑧 that

produce outputs 𝑥 agreeing with 𝑦.

Conditional sampling with pre-trained diffusion models can be realized via the

technique known as classifier guidance [226, 231]. A likelihood function 𝑝0(𝑦|𝑥0)
specified for the terminal (clean) object 𝑥0 at 𝑡 = 0 induces a conditional distribution

𝑝0(𝑥0|𝑦) ∝ 𝑝𝜃,0(𝑥0)𝑝0(𝑦|𝑥0) the conditional diffusion flow initialized with 𝑝0(𝑥0|𝑦) is

given by

𝑝𝑡(𝑥𝑡|𝑦) =

∫︁
𝑞(𝑥𝑡|𝑥0)𝑝0(𝑥0|𝑦) 𝑑𝑥0. (2.111)

Since the conditional probability flow 𝑝𝑡(𝑥𝑡|𝑦) is generated by the same noising process

𝑞(𝑥𝑡|𝑥0) as the pre-trained diffusion probability flow 𝑝𝑡,𝜃(𝑥𝑡), the conditional probability

flow can be reversed and realized by the backward SDE (2.34) or backward ODE

71

(2.36) provided a conditional score function ∇𝑥 log 𝑝𝑡(𝑥𝑡|𝑦). The conditional score can

be decomposed as

∇𝑥 log 𝑝𝑡(𝑥𝑡|𝑦) = ∇𝑥 log 𝑝𝜃,𝑡(𝑥𝑡) +∇𝑥 log 𝑝𝑡(𝑦|𝑥𝑡), (2.112)

where the first term is approximated by the pre-trained (unconditional) score network

𝑢𝜃(𝑥𝑡, 𝑡) ≈ ∇𝑥 log 𝑝𝜃,𝑡(𝑥𝑡), and the second term is the gradient of the log-probability

of the time-dependent classifier 𝑝𝑡(𝑦|𝑥𝑡). The probability of conditioning variable 𝑦

given a noised datapoint 𝑥𝑡 is given by

𝑝(𝑦|𝑥𝑡) =
𝑝𝑡(𝑥𝑡|𝑦)𝑝(𝑦)

𝑝𝑡(𝑥𝑡)
=

𝑝(𝑦)

𝑝𝑡(𝑥𝑡)

∫︁
𝑞(𝑥𝑡|𝑥0)

𝑝(𝑦|𝑥0)
𝑝(𝑦)

𝑝(𝑥0) 𝑑𝑥0

=E𝑝(𝑥0|𝑥𝑡)[𝑝0(𝑦|𝑥0)]. (2.113)

Given access to the terminal time classifier 𝑝0(𝑦|𝑥0), the time-dependent classifier

𝑝𝜑,𝑡(𝑦|𝑥𝑡) ∝ 𝑓𝜑(𝑦, 𝑥𝑡, 𝑡), parameterized by a nerual network 𝑓𝜑(𝑦, 𝑥𝑡, 𝑡) with parameters

𝜑, can be learned by minimizing the negative log-likelihood loss

ℒ(𝜑) = E𝒰(𝑡;[0,𝑇])E𝑝(𝑥𝑡,𝑥0)E𝑝0(𝑦|𝑥0)[− log 𝑝𝜑,𝑡(𝑦|𝑥𝑡)]. (2.114)

The pairs (𝑥𝑡, 𝑥0) can be either generated from the model 𝑝𝜃,𝑡(𝑥𝑡) (by simulating

backward ODE/SDE) or by applying the noising process 𝑞(𝑥𝑡|𝑥0) to the clean data

𝑥0 ∼ 𝑝(𝑥0) (either sampled from the model or from the dataset).

Section 5.3 provides a review of recent work on controllable generation with

diffusion models. Methods for conditional generation with GFlowNets are discussed

in Chapter 5.

Model Composition. In practical applications, one might want to combine several

deep probabilistic models trained for different tasks or on different datasets. With the

growing availability of generative models pre-trained at scale, it becomes increasingly

important to re-use and integrate previously trained models for new tasks. Compo-

sitional methods provide a powerful framework for this, allowing the capacities of

72

multiple models to be combined in a way that enables solving tasks different from

those specified at training time. Moreover, compositional approaches offer mechanisms

for controlling the generation results with respect to multiple criteria, enhancing the

flexibility and applicability of deep probabilistic models.

In terms of probabilistic models, composition can be understood as the construc-

tion of a complex probability distribution from available pre-trained probabilistic

models. This can be described at the level of probability distributions, where a

complex distribution is the result of applying a composition operation to several input

probability distributions. Alternatively, compositions can be constructed by coupling

and coordinating the generative processes that realize these distributions. We refer the

reader to [60] for review of compositional generative modeling techniques. Methods

for composition of energy-based and diffusion models are also reviewed in Section 5.3.

Chapter 5 addresses composition operations for GFlowNets and diffusion models.

73

74

Chapter 3

Pairwise-Discriminator Objectives for

Generative Adversarial Networks

3.1 Introduction

In Generative Adversarial Networks (GANs) [78] we seek to align the generated

samples with the real ones (e.g., images). The generative model in GANs is trained by

minimizing a discrepancy or divergence measure between the two distributions. This

divergence measure is realized by a discriminator trained to separate real examples

from those sampled from the model [183].

Despite their appeal, GANs are known to be hard to train due to stability issues.

Since the estimation is typically setup as two objectives, one for the generator, the

other for the discriminator, the desired solution is analogous to a Nash equilibrium

of the associated game. Without additional regularization, the dynamics between

the two can become unstable [168], and lead to a never-ending game. While there

are multiple reasons for instability, in this Chapter, we focus in particular on what

we define as alignment instability: the instability of alignment around the optimal

solution(s).

The generator sees the training signal, the divergence measure, only through the

discriminator. As a result, a generator that aligns perfectly with the target distribution

can be thrown off the alignment by a sub-optimal discriminator. In other words,

75

−1.0 −0.5 0.0 0.5 1.0
xf ake

−1.0

−0.5

0.0

0.5

1.0

ψ
trajectory

stationary point

0 200 400 600 800 1000

steps

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

x

xreal

xf ake

−1.0 −0.5 0.0 0.5 1.0
xf ake

−1.0

−0.5

0.0

0.5

1.0

ψ

trajectory

stationary points

0 200 400 600 800 1000

steps

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

x

xreal

xf ake

Figure 3-1: Demonstration of adversarial training dynamics on toy examples for:
(top) unary discriminator with standard objective; (bottom) pairwise discriminator
with our objective. Left: vector field and training trajectories for a toy generator
𝑞(𝑥) = 𝛿(𝑥− 𝑥fake) and a discriminator 𝐷𝜓 parameterized by a single real number 𝜓.
Right: trajectory of fake and real samples: 𝑥fake and 𝑥real = 0.

generator can achieve alignment if and only if the discriminator reaches its optimum

at the same time.

We illustrate the instability problem and our approach to resolving it with a

toy example [168] in Figure 3-1. In this example, the generative model is simply

76

𝑞(𝑥) = 𝛿(𝑥−𝑥fake), i.e., concentrated on a single point 𝑥fake, which is the parameter to

optimize. The goal is to align it with a real point fixed at 𝑥real = 0. The discriminator

is a simple classifier 𝐷𝜓(𝑥) = 𝜓 · 𝑥 parameterized by slope 𝜓. The top left panel in

Figure 3-1 gives the vector field for an alternating gradient descent training as well as

an example trajectory. The training objective is given by the zero-sum game:

min
𝑥fake

max
𝜓

[𝑓(𝜓 · 𝑥fake) + 𝑓(0)], 𝑓(𝑡) = − log(1 + 𝑒−𝑡).

The top right panel in Figure 3-1 shows the time evolution of 𝑥fake in relation to 𝑥real.

Note, in particular, that even when 𝑥fake reaches the target position 𝑥real = 0 (perfect

alignment) the sub-optimal discriminator drives the points apart.

In this Chapter, we focus on a different class of discriminators that operate on pairs

of samples, trained to identify whether the samples come from the same distribution or

not. Utilizing such pairwise discriminators, we identify a family of training objectives

which ensures alignment stability even if the discriminator is sub-optimal.

The bottom panels in Figure 3-1 illustrate the same example, now with a pairwise

discriminator: 𝐷𝜓(𝑥, 𝑦) = 𝜓 · |𝑥− 𝑦|𝛾, where 𝛾 is a constant: 𝛾 ≥ 1. The left panel

again shows the vector field for alternating gradient updates between 𝑥fake and 𝜓,

resulting from our objective function described in Section 3.5. In this case, the

alignment 𝑥fake = 0 is a stationary point for any discriminator. The time evolution

now shows that the alignment is preserved. In the experiment described in Section

3.7.1, we observe alignment instability occurring in a controlled setting with deep

GAN architectures (Figure 3-2). Each panel in the figure shows time evolution of

the generator over the course of training. In this experiment a deep generator is

re-parameterized with a single scalar 𝛼 so that the generated distribution is aligned

with the target at 𝛼* = 0. The pattern observed in the toy example in Figure 3-1 holds

in Figure 3-2 where a unary objective of SGAN results in oscillating training curve

and pairwise objective of PairSGAN derived from our approach stabilizes training

dynamics. We refer to Appendix A.7.1 for a detailed description of the toy example

in Figure 3-1 and to Section 3.7.1 and Appendix A.8.1 for details on Figure 3-2.

77

We make following contributions:

1. In Section 3.4, we introduce a family of training objectives with pairwise dis-

criminators, that preserve the distribution alignment, if achieved, regardless of

the discriminator status.

2. In Section 3.5.2, we show that in our setup, only the generator needs to converge,

and we provide conditions for local convergence.

3. In Section 3.5.3, we introduce the notion of a sufficient discriminator that

formalizes the relationship between the capacities of the discriminator and

generator.

4. In Section 3.7, we design and carry out experiments which evaluate alignment

instability in deep models and we empirically confirm that PairGAN ensures

stability of alignment. In experiments on real image datasets we find that

PairGAN provides training stability.

All proofs can be found in Appendix A.

3.2 Related Work

Goodfellow et al. [78] proposed Generative Adversarial Networks and showed that the

associated min-max game can be viewed as minimization of Jensen-Shannon divergence.

It was pointed out by Nowozin et al. [183] that the standard GAN objective is a

special case of a broader family of min-max objectives corresponding to 𝑓 -divergences.

Arjovsky et al. [9] showed that game-theoretic setup of GANs can be extended to

approximately optimize the Wasserstein distance. Mao et al. [160] propose LSGAN

which uses a least squares objective related to Pearson 𝜒2 divergence.

Mescheder et al. [167] and Nagarajan and Kolter [176] proved that GAN training

convergences locally for absolutely continuous distributions. However, GANs are

commonly used to approximate distributions that lie on low-dimensional manifolds

[8]. Mescheder et al. [168] showed that in this case, many training methods do

78

0 10000 20000 30000 40000 50000

steps

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

α

PairSGAN

0 10000 20000 30000 40000 50000

steps

−3

−2

−1

0

1

2

3

α

SGAN

0 10000 20000 30000 40000 50000

steps

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

α

RSGAN

0 10000 20000 30000 40000 50000

steps

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

α

XORGAN

Figure 3-2: Training curves for DCGAN generator re-parameterized with a single
scalar parameter 𝛼 for fixed generator matching experiment (Section 3.7.1) with
different GAN models. 𝛼* = 0 correspond to the generator perfectly aligned with the
target distribution.

not guarantee local convergence without additional regularizations, such as gradient

penalties [214], which enjoy both theoretic guarantees and empirical improvements.

There is a body of work on GANs which utilize pairwise discriminators for improving

training dynamics. To combat mode collapse, Lin et al. [147] proposed to feed a pack

of multiple samples from the same distribution to the discriminator rather than a

pair of samples from different distributions. In Section 3.6 we discuss the relation

between our methods and closely related Relativistic GAN [114], XORGAN [245], and

MMD-GAN [144, 256].

79

3.3 Background

Let 𝒳 denote the space of objects (e.g. images). We consider functional spaces ℱ(𝒳)

of real-valued functions 𝑓 : 𝒳 → R operating on 𝒳 . In this Chapter we consider two

particular settings: (i) 𝒳 = {𝑥1, . . . , 𝑥𝑘} is a finite set, ℱ(𝒳) = R𝑘; (ii) 𝒳 ⊂ R𝑘

is a compact set, ℱ(𝒳) = 𝐿2(𝒳). In both cases, ℱ(𝒳) is a vector space with

inner product. In our analysis, we build intuition about linear functionals and linear

operators on ℱ(𝒳) treating them as finite-dimensional vectors and matrices. While

the space R𝑘 provides useful intuition, our results naturally extend to 𝐿2(𝒳).

Objectives for GANs. Consider a generative modelling setup where we want to

approximate a distribution of “real” objects 𝑝(𝑥) with a distribution of generated

(“fake”) objects 𝑞(𝑥). The training in GANs is performed by solving a game between

the generator 𝑞(·) and a unary discriminator 𝐷(·) : 𝒳 → R which operates on single

samples, with the loss functions1 for the two given by

ℒ𝐷 = E𝑝
[︁
𝑓1(𝐷(𝑥))

]︁
+ E𝑞

[︁
𝑓2(𝐷(𝑥))

]︁
, (3.1a)

ℒ𝐺 = E𝑝
[︁
𝑔1(𝐷(𝑥))

]︁
+ E𝑞

[︁
𝑔2(𝐷(𝑥))

]︁
. (3.1b)

where 𝑓1, 𝑓2, 𝑔1, 𝑔2 : R → R are activation functions applied to the discriminator.

The original GAN by Goodfellow et al. [78], which we refer to as the standard GAN

(SGAN for short), has 𝑓1(𝑡) = −𝑔1(𝑡) = − log(𝑡), 𝑓2(𝑡) = −𝑔2(𝑡) = − log(1− 𝑡) for the

saturating version and 𝑓1(𝑡) = 𝑔2(𝑡) = − log(𝑡), 𝑓2(𝑡) = 𝑔1(𝑡) = − log(1 − 𝑡) for the

non-saturating one.

Unary objectives as linear forms. An expectation E𝑝
[︀
𝑓(𝐷(𝑥))

]︀
=∫︀

𝑓(𝐷(𝑥))𝑝(𝑥) 𝑑𝑥 can be viewed as a linear form in the function space:
⟨︀
𝑎𝑓𝐷 , 𝑝

⟩︀
,

where 𝑎𝑓𝐷 and 𝑝 are the function space vectors corresponding to functions 𝑓(𝐷(·)) and

𝑝(·) respectively. Using the function space notation we can rewrite the losses

ℒ𝐷 =
⟨︀
𝑎𝑓1𝐷 , 𝑝

⟩︀
+
⟨︀
𝑎𝑓2𝐷 , 𝑞

⟩︀
, (3.2a)

1Throughout this Chapter, we assume that all loss functions are to be minimized.

80

ℒ𝐺 =
⟨︀
𝑎𝑔1𝐷 , 𝑝

⟩︀
+
⟨︀
𝑎𝑔2𝐷 , 𝑞

⟩︀
. (3.2b)

Set of probability density functions. Note that 𝑝 and 𝑞 must define

valid density functions. We define 𝒫(𝒳) as the set of probability density

functions which belong to ℱ(𝒳). Formally, we define 𝒫(𝒳) as 𝒫(𝒳) ={︀
𝑝 ∈ ℱ(𝒳)

⃒⃒⟨︀
𝑝 , 𝑒

⟩︀
= 1; 𝑝(𝑥) ≥ 0 ∀𝑥 ∈ 𝒳

}︀
, where 𝑒 ∈ ℱ(𝒳) is a function space

vector 𝑒(𝑥) ≡ 1 having the constant value of 1 on all of its “positions”.

Pairwise discriminators. The standard setup of GANs can be extended by replac-

ing the unary discriminator 𝐷(·) with a pairwise discriminator 𝐷(·, ·) : 𝒳 × 𝒳 → R

which operates on pairs of samples [114, 144, 245]. In this Chapter we define a pairwise

discriminator as which classifies the pairs of samples into two classes: same distribution

pairs and different distribution pairs:

𝑀+
𝑝,𝑞(𝑥, 𝑦) = 1

2
(𝑝(𝑥) · 𝑝(𝑦) + 𝑞(𝑥) · 𝑞(𝑦)); (3.3a)

𝑀−
𝑝,𝑞(𝑥, 𝑦) = 1

2
(𝑝(𝑥) · 𝑞(𝑦) + 𝑞(𝑥) · 𝑝(𝑦)). (3.3b)

With a pairwise discriminator, we define a modified game for GANs:

ℒ𝐷 =E𝑝×𝑝
[︁
𝑓1(𝐷(𝑥, 𝑦))

]︁
+ E𝑞×𝑞

[︁
𝑓1(𝐷(𝑥, 𝑦))

]︁
+ E𝑝×𝑞

[︁
𝑓2(𝐷(𝑥, 𝑦))

]︁
+ E𝑞×𝑝

[︁
𝑓2(𝐷(𝑥, 𝑦))

]︁
,

(3.4a)

ℒ𝐺 =E𝑝×𝑝
[︁
𝑔1(𝐷(𝑥, 𝑦))

]︁
+ E𝑞×𝑞

[︁
𝑔1(𝐷(𝑥, 𝑦))

]︁
+ E𝑝×𝑞

[︁
𝑔2(𝐷(𝑥, 𝑦))

]︁
+ E𝑞×𝑝

[︁
𝑔2(𝐷(𝑥, 𝑦))

]︁
.

(3.4b)

Pairwise objectives as bilinear forms. An expectation E𝑝,𝑞
[︀
𝑓(𝐷(𝑥, 𝑦))

]︀
=∫︀∫︀

𝑓(𝐷(𝑥, 𝑦))𝑝(𝑥)𝑞(𝑦)𝑑𝑥𝑑𝑦 can be viewed as a bi-linear form in the function space:⟨︀
𝑝 , 𝐴𝑓𝐷𝑞

⟩︀
, where 𝐴𝑓𝐷 denotes a function-space linear operator corresponding to the

function 𝑓(𝐷(·, ·)): [𝐴𝑓𝐷𝑞](𝑥) =
∫︀
𝑓(𝐷(𝑥, 𝑦))𝑞(𝑦) 𝑑𝑦. Using the bi-linear forms we

81

re-write the losses (3.4) in the form:

ℒ𝐷 =
⟨︀
𝑝 , 𝐴𝑓1𝐷 𝑝

⟩︀
+
⟨︀
𝑞 , 𝐴𝑓1𝐷 𝑞

⟩︀
+
⟨︀
𝑝 , 𝐴𝑓2𝐷 𝑞

⟩︀
+
⟨︀
𝑞 , 𝐴𝑓2𝐷 𝑝

⟩︀
, (3.5a)

ℒ𝐺 =
⟨︀
𝑝 , 𝐴𝑔1𝐷𝑝

⟩︀
+
⟨︀
𝑞 , 𝐴𝑔1𝐷 𝑞

⟩︀
+
⟨︀
𝑝 , 𝐴𝑔2𝐷 𝑞

⟩︀
+
⟨︀
𝑞 , 𝐴𝑔2𝐷𝑝

⟩︀
. (3.5b)

In order to simplify analysis in the following sections, we assume that 𝐷(𝑥, 𝑦) is

a symmetric function (𝐷(𝑥, 𝑦) = 𝐷(𝑦, 𝑥)) corresponding to a self-adjoint operator:

(𝐴𝑓𝐷)𝑇 = 𝐴𝑓𝐷. Note that all results below hold for non-symmetric discriminators, since

objectives (3.5) are invariant to symmetrization of operators 𝐴→ 1
2
(𝐴+ 𝐴𝑇).

3.4 How To Preserve The Alignment?

Unary discriminators destroy the alignment. Consider the generator loss for a

unary GAN (3.2). Suppose that at some moment the generator has been aligned with

the target distribution: 𝑞* = 𝑝. With the subsequent update, 𝑞 receives the gradient

signal ∇𝑞ℒ𝐺 = 𝑎𝑔2𝐷 . Below we show that unless 𝐷(𝑥) is constant in the support of 𝑝,

the discriminator will drive 𝑞 away from 𝑝 and destroy the alignment.

We consider an infinitesimal perturbation 𝑞′ = 𝑞* + 𝜀. Since 𝑞′ must be a valid

density function, 𝜀 must satisfy: (i)
⟨︀
𝜀 , 𝑒

⟩︀
= 0; (ii) 𝑝(𝑥) + 𝜀(𝑥) ≥ 0 ∀𝑥. The

first-order change of the generator loss (3.2) corresponding to the perturbation 𝜀 is

given by: ℒ𝐺(𝑞* + 𝜀,𝐷) − ℒ𝐺(𝑞*, 𝐷) ≈
⟨︀
𝑎𝑔2𝐷 , 𝜀

⟩︀
. The generator is stationary at 𝑞*

iff
⟨︀
𝑎𝑔2𝐷 , 𝜀

⟩︀
= 0, ∀ 𝜀 :

⟨︀
𝜀 , 𝑒

⟩︀
= 0, 𝑝(𝑥) + 𝜀(𝑥) ≥ 0 ∀𝑥. This is only possible when

𝑔2(𝐷(𝑥)) is constant in the support of 𝑝.

This observation implies that the generator can not converge unless the discrimi-

nator 𝐷(·) converges to the equilibrium position.

Pairwise discriminators preserve the alignment. We find that there is a

family of generator objectives (3.5) with pairwise discriminators that prevents the

discriminator from destroying the alignment, meaning: ∇𝑞ℒ𝐺(𝑞,𝐷)
⃒⃒
𝑞=𝑝

= 0, ∀𝐷.
Indeed, in order to satisfy ∇𝑞ℒ𝐺(𝑞,𝐷)

⃒⃒
𝑞=𝑝

= 2(𝐴𝑔1𝐷 + 𝐴𝑔2𝐷)𝑝 = 0 it is sufficient to

choose 𝑔2(𝑥) = −𝑔1(𝑥)⇒ 𝐴𝑔2𝐷 = −𝐴𝑔1𝐷 . We define a function 𝑔(𝑥) = 𝑔1(𝑥) = −𝑔2(𝑥)

82

and consider the following instance of the generator loss (3.5b):

ℒ𝐺 =
⟨︀
𝑝− 𝑞 , 𝐴𝑔𝐷(𝑝− 𝑞)

⟩︀
(3.6)

3.5 PiarGAN

In this section, we first propose PairGAN, a formulation of GANs with the generator

loss of the form (3.6). Then, in Section 3.5.1, for specific choices of 𝑓1, 𝑓2 and 𝑔, we

provide a theoretical insight similar to that in Goodfellow et al. [78] to show that our

approach in a specific form also minimizes a meaningful divergence metric. In Section

3.5.2, through evaluating the sufficient condition for local convergence, we introduce

the notion of sufficient discriminators, which we analyze in details in Sections 3.5.3

and 3.5.4.

PairGAN. General formulation of PairGAN loss functions are described by a two

player game:

𝐿𝒟(𝐷, 𝑞) =E𝑝×𝑝
[︁
𝑓1(𝐷(𝑥, 𝑦))

]︁
+ E𝑞×𝑞

[︁
𝑓1(𝐷(𝑥, 𝑦))

]︁
+ E𝑝×𝑞

[︁
𝑓2(𝐷(𝑥, 𝑦))

]︁
+ E𝑞×𝑝

[︁
𝑓2(𝐷(𝑥, 𝑦))

]︁
, (3.7a)

𝐿𝒢(𝐷, 𝑞) =E𝑝×𝑝
[︁
𝑔(𝐷(𝑥, 𝑦))

]︁
+ E𝑞×𝑞

[︁
𝑔(𝐷(𝑥, 𝑦))

]︁
− E𝑝×𝑞

[︁
𝑔(𝐷(𝑥, 𝑦))

]︁
− E𝑞×𝑝

[︁
𝑔(𝐷(𝑥, 𝑦))

]︁
. (3.7b)

PairGAN-Z. We also consider a zero-sum game for loss (3.6). We call the corre-

sponding formulation PairGAN-Z:

𝐿𝒟(𝐷, 𝑞) =− 𝐿𝒢(𝐷, 𝑞) (3.8a)

𝐿𝒢(𝐷, 𝑞) =E𝑝×𝑝
[︁
𝑔(𝐷(𝑥, 𝑦))

]︁
+ E𝑞×𝑞

[︁
𝑔(𝐷(𝑥, 𝑦))

]︁
− E𝑝×𝑞

[︁
𝑔(𝐷(𝑥, 𝑦))

]︁
− E𝑞×𝑝

[︁
𝑔(𝐷(𝑥, 𝑦))

]︁
. (3.8b)

83

3.5.1 Divergence Minimization

Consider the following choice of functions 𝑓1, 𝑓2 and 𝑔 for PairGAN: 𝑓1(𝑡) =

− log(𝑡), 𝑓2(𝑡) = − log(1− 𝑡), 𝑔(𝑡) = log(𝑡). These loss functions are natural choice

for a probabilistic discriminator. In this setup, we interpret the output of a pairwise

discriminator 𝐷(·, ·) as the estimated probability of a pair being sampled from the

same distributions. We refer to this particular PairGAN as PairSGAN (pair standard

GAN). We show that PairSGAN setup corresponds to meaningful divergence metric.

Proposition 3.5.1. Let ̂︀𝐿(𝑞), denote the value of the generator loss for the optimal

discriminator ̂︀𝐿𝒢(𝑞) = 𝐿𝒢(𝐷*(𝑞), 𝑞), 𝐷*(𝑞) = argmin𝐷∈𝒟 𝐿𝒟(𝐷, 𝑞). ̂︀𝐿𝒢 is equivalent

to a divergence between the distributions 𝑀+
𝑝,𝑞 and 𝑀𝑝,𝑞 = 1

2
(𝑀+

𝑝,𝑞 +𝑀−
𝑝,𝑞):

̂︀𝐿𝒢(𝑞) = 4 ·
(︀

KL(𝑀+
𝑝,𝑞‖𝑀𝑝,𝑞) + KL(𝑀𝑝,𝑞‖𝑀+

𝑝,𝑞)
)︀
,

Consequently: (i) ̂︀𝐿𝒢(𝑞) ≥ 0; (ii) ̂︀𝐿𝒢(𝑞) = 0 iff 𝑞 = 𝑝.

Consider a particular instance of the PairGAN-Z game (3.8) corresponding to:

𝑔(𝑡) = log(𝑡).

We define a family of probabilistic discriminators whose values are separated from

zero:

𝒟[𝜀,1] = {𝐷(·, ·) | 𝐷(𝑥, 𝑦) ∈ [𝜀, 1] ∀ (𝑥, 𝑦)},

where 𝜀 ∈ (0, 1).

Then, the generator loss evaluated at the optimal PairGAN-Z discriminator is

̂︀𝐿𝑍𝒢 (𝑞) = 𝐿𝒢(𝐷*
𝜀(𝑞), 𝑞), 𝐷

*
𝜀(𝑞) = argmax

𝐷∈𝒟[𝜀,1]

𝐿𝒢(𝐷, 𝑞).

Proposition 3.5.2. ̂︀𝐿𝑍𝒢 is equivalent to the total variation distance between the mixture

distributions 𝑀+
𝑝,𝑞 and 𝑀−

𝑝,𝑞:

̂︀𝐿𝑍𝒢 (𝑞) = − log(𝜀) · 𝛿TV(𝑀+
𝑝,𝑞‖𝑀−

𝑝,𝑞).

84

Consequently: (i) ̂︀𝐿𝑍𝒢 (𝑞) ≥ 0 ∀ 𝑞; (ii) ̂︀𝐿𝑍𝒢 (𝑞) = 0 ⇐⇒ 𝑞 = 𝑝.

3.5.2 Local Convergence Of Generator

We note that in game (3.7), since the generator loss is designed to preserve alignment

once achieved, we only require the generator to reach alignment but do not require

the discriminator to converge to a specific position. Thus, the goal of our convergence

analysis is to identify the set of discriminators which allow the generator to converge.

Let 𝐷𝜓(·, ·) and 𝑞(·; 𝜃) be parametric discriminator and generator parameterized

by vectors 𝜓 ∈ R𝑚 and 𝜃 ∈ R𝑛 respectively. We consider the realizable setup, that is

we assume that there exists 𝜃* such that: 𝑞(·; 𝜃*) = 𝑝(·). Generally, a parametrization

may permit different instances of parameters to define the same distribution. Hence,

we consider a reparametrization manifold [168]: ℳ𝐺 = {𝜃|𝑞(·; 𝜃) = 𝑝(·)} . In our

analysis below, we assume that there is an 𝜖-ball 𝐵𝜖(𝜃
) around 𝜃 ∈ℳ𝐺 such that

ℳ𝐺 ∩𝐵𝜖(𝜃
*) defines a 𝒞1-manifold. We denote the tangent space of the manifoldℳ𝐺

at 𝜃* by 𝒯𝜃*ℳ𝐺.

Recall from Section 3.4 that 𝜃* is a stationary generator for any discriminator 𝜓.

Similar to Mescheder et al. [168] we analyze the local convergence by examining the

eigenvalues of the Hessian of the loss (3.7b) w.r.t 𝜃 at 𝜃*. We denote this Hessian

by 𝐻(𝜃*;𝜓) = ∇2
𝜃𝜃𝐿𝒢(𝐷𝜓, 𝑞(·; 𝜃))|𝜃=𝜃* . In Appendix A.3 we show that the Hessian is

given by

𝐻(𝜃*;𝜓) = 2

∫︁∫︁ [︁
𝑔(𝐷𝜓(𝑥, 𝑦)) ·

(︀
[∇𝜃𝑞(𝑥; 𝜃*)][∇𝜃𝑞(𝑦; 𝜃*)]𝑇

)︀]︁
𝑑𝑥 𝑑𝑦. (3.9)

The following proposition provides a sufficient condition for local convergence of

the generator.

Proposition 3.5.3. Suppose that 𝜃* ∈ℳ𝐺 and a pair (𝜓0, 𝜃
*) satisfies:

𝑢𝑇 [𝐻(𝜃*;𝜓0)]𝑢 > 0 ∀𝑢 /∈ 𝒯𝜃*ℳ𝐺. (3.10)

Then, with fixed 𝜓 = 𝜓0, gradient descent w.r.t. 𝜃 for (3.7b) converges to ℳ𝐺 in

85

−0.6 −0.3 0.0 0.3 0.6
xf ake

−0.6

−0.3

0.0

0.3

0.6
ψ

−0.2 −0.1 0.0 0.1 0.2
xf ake

−0.1

0.0

0.1

0.2

0.3

0.4

ψ

trajectory 1 trajectory 2 stationary point(s)

Figure 3-3: Visualization of convergence points. Left: SGAN with gradient penalty.
Right: PairGAN

a neighborhood of 𝜃* provided a small enough learning rate. Moreover, the rate of

convergence is at least linear.

Proposition 3.5.3 states that a discriminator 𝜓0 satisfying condition (3.10) allows

the generator to converge. While, the convergence guarantee is only established for

training the generator with a fixed discriminator, this result still holds if we allow 𝜓

to vary within a set. Indeed, from Proposition 3.5.3 it follows that 𝜃 converges to

ℳ𝐺, given that 𝜓 remains in the set of the discriminators satisfying (3.10). Note that

this set includes all discriminator 𝜓 in a neighborhood of 𝜓0, since 𝑢𝑇 [𝐻(𝜃*, 𝜓)]𝑢 is

continuous at 𝜓0 for any 𝑢.

Figure 3-3 contrasts the convergence properties for GANs with unary discriminators

and PairGAN on a toy example identical to that described in Section 3.1. Left panel

of Figure 3-3 shows two trajectories for SGAN with gradient penalties [168]. Both tra-

jectories converge to the only stationary point. On the contrary, for PairGAN (Figure

3-3, right), two trajectories initialized at different points both achieve the alignment

𝑥fake = 0 but converge to different positions of discriminator 𝜓. In this example, the

discriminators corresponding to 𝜓 > 0 satisfy (3.10) and define the gradient vector

field pointing towards the line 𝑥fake = 0. We note that the discriminator updates

tend to keep 𝜓 positive.

86

3.5.3 Sufficient Discriminators

To characterize the set of discriminators satisfying condition (3.10), we build intuition

from the function space perspective.

We consider a perturbed value of the parameters of the generator 𝜃′ = 𝜃* + 𝑢,

where 𝑢 ∈ R𝑛 is an infinitesimal perturbation vector. The corresponding first-order

perturbation of the generated distribution 𝑞 can be expressed via Taylor expansion:

𝜀𝑢(𝑥) = 𝑢𝑇 [∇𝜃𝑞(𝑥; 𝜃*)]. Note that 𝜀𝑢(.) is a linear combination of the derivatives w.r.t.

to individual parameters 𝜃1, . . . , 𝜃𝑛: 𝜀𝑢(𝑥) =
∑︀𝑛

𝑖=1 𝑢𝑖𝛼𝑖(𝑥), 𝛼𝑖(𝑥) = 𝜕
𝜕𝜃𝑖
𝑞(𝑥; 𝜃*). Thus,

the set of all 𝜀𝑢(𝑥) defines a finite-dimensional subspace of the function space. We

denote this subspace by 𝑊𝑞(𝜃
*): 𝑊𝑞(𝜃

*) := {𝜀(·)|𝜀(𝑥) =
∑︀𝑛

𝑖=1 𝑢𝑖𝛼𝑖(𝑥), 𝑢 ∈ R𝑛} . Note

that dim(𝑊𝑞(𝜃
)) = 𝑛 − dim(ℳ𝐺), since 𝜀𝑢(𝑥) ≡ 0 ⇔ 𝑢𝑇 [∇𝜃𝑞(𝑥; 𝜃)] ≡ 0 ⇔ 𝑢 ∈

𝒯𝜃*ℳ𝐺.

The expression in equation (3.10) can be rewritten in terms of the perturbation

𝜀𝑢: 𝑢𝑇 [𝐻(𝜃*;𝜓)]𝑢 =
⟨︀
𝜀𝑢 , 𝐴

𝑔
𝐷𝜓
𝜀𝑢
⟩︀
. The following definition gives a function space

reformulation of the condition (3.10).

Definition 3.5.4. We say that a self-adjoint operator 𝐴 is sufficient for a parametric

generator 𝑞(·; 𝜃) at 𝜃* if

⟨︀
𝜀𝑢 , 𝐴𝜀𝑢

⟩︀
> 0, ∀ 𝜀𝑢 ∈ 𝑊𝑞(𝜃

*), 𝜀𝑢 ̸= 0. (3.11)

We say that a discriminator 𝐷 is sufficient for 𝑞(·; 𝜃) at 𝜃* if the corresponding operator

𝐴𝑔𝐷 is sufficient for 𝑞(·; 𝜃) at 𝜃*.

This definition essentially means that a discriminator is sufficient for a particular

aligned generator if every possible change that this generator can make only results in

increasing the generator loss.

3.5.4 Minimally Sufficient Discriminators

In this section, we define a notion of minimally sufficient discriminators and provide

constructive examples of such discriminators. Note that for the condition (3.11) to be

87

satisfied, it is required that 𝑊𝑞(𝜃
*) ⊆ Im(𝐴).

Definition 3.5.5. We say that an operator 𝐴 is minimally sufficient for 𝑞(·; 𝜃) at 𝜃* if

(i) 𝐴 is sufficient for 𝑞(·; 𝜃) at 𝜃*;

(ii) for any sufficient operator 𝐵 : Im(𝐴) ⊆ Im(𝐵).

The following proposition provides constructive examples of minimally sufficient

discriminators for any given parametric generator.

Proposition 3.5.6. Let 𝑔1(𝑥; 𝜃) and 𝑔2(𝑥; 𝜃) denote the functions:

𝑔1(𝑥; 𝜃) = ∇𝜃𝑞(𝑥; 𝜃) 𝑔2(𝑥; 𝜃) = ∇𝜃 log 𝑞(𝑥; 𝜃).

The operators 𝐴*
1 and 𝐴*

2:

𝐴*
𝑖 (𝑥, 𝑥

′; 𝜃*) = [𝑔𝑖(𝑥; 𝜃*)]𝑇 [𝑔𝑖(𝑥; 𝜃*)];

are minimally sufficient operators for 𝑞(·; 𝜃) at 𝜃*.

These operators define the following generator objectives (3.7b):

𝐿*
𝑖 (𝜃) =

⃦⃦⃦
E𝑝(𝑥)

[︁
𝑔𝑖(𝑥; 𝜃)

]︁
− E𝑞(𝑥;𝜃)

[︁
𝑔𝑖(𝑥; 𝜃)

]︁⃦⃦⃦2
. (3.12)

Discussion of Proposition 3.5.6. Operators 𝐴*
𝑖 correspond to discriminators de-

fined through the gradients of the density/log-density of a parametric generator 𝑞(𝑥; 𝜃).

In other words, these examples show that given a parametric generator one can con-

struct a minimally sufficient discriminator using the gradients ∇𝜃𝑞(𝑥; 𝜃)/∇𝜃 log 𝑞(𝑥; 𝜃).

Consider the minimization problem for 𝐿*
𝑖

min
𝜃
𝐿*
𝑖 (𝜃),

which can be written as

min
𝜃

⟨︀
𝑝(·)− 𝑞(· ; 𝜃) , 𝐴*

𝑖 (· , · ; 𝜃)[𝑝(·)− 𝑞(· ; 𝜃)]
⟩︀
.

88

This optimization problem defines a training procedure for the generator 𝑞(𝑥; 𝜃), where

instead of training a discriminator, we utilize the operator 𝐴*
𝑖 (· , · ; 𝜃) which depends

on the generator 𝑞(𝑥; 𝜃) itself.

Below, we consider each of the losses 𝐿*
1(𝜃) and 𝐿*

2(𝜃) and show that they are

connected to particular divergence metrics between the distributions 𝑝(𝑥) and 𝑞(𝑥; 𝜃).

Interpretation of 𝐿*
1(𝜃)

We re-write 𝐿*
1(𝜃) as

𝐿*
1(𝜃) =

⃦⃦⃦
E𝑞(𝑥;𝜃)

[︁
∇𝜃𝑞(𝑥; 𝜃)

]︁
− E𝑝(𝑥)

[︁
∇𝜃𝑞(𝑥; 𝜃)

]︁
⏟ ⏞

𝐼(𝜃)

⃦⃦⃦2
,

where the function 𝐼(𝜃) can be expressed as

𝐼(𝜃) =

∫︁ [︀
𝑞(𝑥; 𝜃)− 𝑝(𝑥)

]︀
· ∇𝜃𝑞(𝑥; 𝜃) 𝑑𝑥 = ∇𝜃

(︃
1

2

∫︁ [︀
𝑞(𝑥; 𝜃)− 𝑝(𝑥)

]︀2
𝑑𝑥⏟ ⏞

𝐿SQ(𝜃)

)︃
.

In the above, expression 𝐿SQ(𝜃) is a divergence defined by the square of the function-

space distance ‖𝑝− 𝑞‖ between 𝑝 and 𝑞.

The loss function 𝐿*
1(𝜃) is connected to 𝐿SQ(𝜃):

𝐿*
1(𝜃) =

⃦⃦
∇𝜃𝐿SQ(𝜃)

⃦⃦2
.

Interpretation of 𝐿*
2(𝜃)

Using the fact that

E𝑞(𝑥;𝜃)
[︁
∇𝜃 log 𝑞(𝑥; 𝜃)

]︁
= 0,

we re-write the loss 𝐿*
2(𝜃) as:

𝐿*
2(𝜃) =

⃦⃦⃦
E𝑝(𝑥)

[︁
∇𝜃 log 𝑞(𝑥; 𝜃)

]︁⃦⃦⃦2
.

89

Next, we consider the KL-divergence

𝐿KL(𝜃) = KL(𝑝(𝑥)‖𝑞(𝑥; 𝜃)) = E𝑝(𝑥)
[︁

log
𝑝(𝑥)

𝑞(𝑥; 𝜃)

]︁
.

The gradient of 𝐿KL(𝜃) is given by

∇𝜃𝐿KL(𝜃) = −E𝑝(𝑥)
[︁
∇𝜃 log 𝑞(𝑥; 𝜃)

]︁
.

Similarly to 𝐿*
1, 𝐿*

2 is connected to the KL-divergence:

𝐿*
2(𝜃) =

⃦⃦
∇𝜃𝐿KL(𝜃)

⃦⃦2
.

Relation to divergence minimization

Above, we have show that losses 𝐿*
1 and 𝐿*

2 are connected to the divergences 𝐿SQ

and 𝐿KL respectively:

𝐿*
1(𝜃) =

⃦⃦
∇𝜃𝐿SQ(𝜃)

⃦⃦2
, 𝐿*

2(𝜃) =
⃦⃦
∇𝜃𝐿KL(𝜃)

⃦⃦2
.

Every divergence is non-negative and evaluates to zero iff 𝜃 = 𝜃*: 𝑞(· ; 𝜃*) = 𝑝(·).
Thus, 𝜃* is the unique global minimum of both 𝐿SQ and 𝐿KL

2.

We view the minimization of the losses 𝐿*
1 and 𝐿*

2 as a relaxation of the divergence

minimization problem. Each of 𝐿*
𝑖 reaches its minimal value 𝐿*

𝑖 (�̂�) = 0 iff �̂� is a

stationary point of the corresponding divergence. In general, a stationary point of

𝐿SQ/𝐿KL is not global optimum (�̂� ̸= 𝜃*) since both divergences can be non-convex

functions of 𝜃. However, near 𝜃*, minimization of 𝐿*
𝑖 converges to 𝜃*. Indeed, we

are interested in analyzing sufficient operators as they provide guarantees for local

convergence for the generator (see Section 3.5.2). Propositions 3.5.3 and 3.5.6 imply

that gradient descent for 𝐿*
𝑖 (𝜃) is locally convergent to 𝜃*.

2We note that minimization of the KL-divergence corresponds to maximum likelihood training of
the generative model 𝑞(𝑥; 𝜃).

90

3.5.5 Towards Global Convergence of PairGAN

Now, we note an interesting property of PairGAN-Z (3.8).

For simplicity, we consider the case of finite 𝒳 = {𝑥1, . . . , 𝑥𝑘}. Let ∆𝑘 denote

the probability simplex in R𝑘. Consider game (3.8) between a generator 𝑞 ∈ ∆𝑘 and

a discriminator-operator 𝐴 ∈ R𝑘×𝑘 given a target distribution 𝑝 ∈ ∆𝑘. Suppose we

initialize 𝑞 and 𝐴 with 𝑞(0) and 𝐴(0) respectively. An iteration of alternating gradient

descent is given by:

𝑞(𝑖+1) = projΔ𝑘
(︁
𝑞(𝑖) − 𝛼 · 2𝐴(𝑖)[𝑞(𝑖) − 𝑝]

)︁
, (3.13a)

𝐴(𝑖+1) = 𝐴(𝑖) + 𝛽 · [𝑝− 𝑞(𝑖+1)][𝑝− 𝑞(𝑖+1)]
𝑇 , (3.13b)

where 𝛼 and 𝛽 are positive learning rates.

Suppose that at some iteration 𝐴 is positive definite. Then, each step of the

generator decreases the metric
⟨︀
𝑝 − 𝑞 , 𝐴(𝑝 − 𝑞)

⟩︀
and drives 𝑞 towards 𝑝. Furthermore,

once 𝐴 has become positive definite it is guaranteed to remain positive definite after

the symmetric rank-1 update (3.13b). Thus once 𝐴 becomes positive definite, 𝑞 is

guaranteed to converge.

We hypothesize that the observed effect opens the possibility to establish global

convergence guarantees for PairGAN-Z (3.8). Informally, with each gradient update

(3.13b), 𝐴 becomes “more” positive definite. Then it remains to prove formally that

with updates (3.13b) 𝐴 reaches positive definite state from any starting point 𝐴(0).

We leave further analysis of this problem for future work.

3.5.6 Aligning Multiple Distributions

In GANs the goal is to align the generated distribution 𝑞 with a fixed real distribution

𝑝. In this section, we consider an extended setup for adversarial training, where our

goal is to align multiple distributions 𝑝1, . . . , 𝑝𝑁 together. This setup is a simplified

version of the distribution alignment problem arising in domain-invariant training

[73, 146], where adversarial training is used to make the distributions of representations

91

in multiple domains indistinguishable from one another.

We consider the following loss function for 𝑝1, . . . , 𝑝𝑁 :

ℒ(𝑝1, . . . , 𝑝𝑁 |𝐷) =
∑︁
𝑖<𝑗

⟨︀
𝑝𝑖 − 𝑝𝑗 , 𝐴𝑔𝐷(𝑝𝑖 − 𝑝𝑗)

⟩︀
= (𝑁 − 1)

𝑁∑︁
𝑖=1

⟨︀
𝑝𝑖 , 𝐴

𝑔
𝐷𝑝𝑖

⟩︀
−
∑︁
𝑖 ̸=𝑗

⟨︀
𝑝𝑖 , 𝐴

𝑔
𝐷𝑝𝑗

⟩︀
. (3.14)

Proposition 3.5.7. Suppose that 𝑝1 = 𝑝2 = . . . = 𝑝𝑘 for some 2 ≤ 𝑘 ≤ 𝑁 . Then

∀ 𝑖, 𝑗 ∈ {1, . . . , 𝑘}:

∇𝑝𝑖ℒ(𝑝1, . . . , 𝑝𝑁 |𝐷) = ∇𝑝𝑗ℒ(𝑝1, . . . , 𝑝𝑁 |𝐷) ∀𝐷.

Proposition 3.5.7 states that whenever all distribution in any given subset of

𝑝1, . . . 𝑝𝑁 become mutually aligned they will receive the same gradient and the align-

ment within this subset will be preserved. The proof of the proposition is provided in

Appendix A.6.

0 200 400 600 800 1000

steps

−0.3

−0.2

−0.1

0.0

0.1

0.2

x

x1

x2

x3

0 200 400 600 800 1000

steps

−0.3

−0.2

−0.1

0.0

0.1

0.2

x

x1

x2

x3

Figure 3-4: Demonstration of dynamics of multiple distribution alignment on a toy
example.

Figure 3-4 provides a toy example demonstration for Proposition 3.5.7. In this

example, the goal is to align three distributions 𝑝𝑖(𝑥) = 𝛿(𝑥− 𝑥𝑖), 𝑖 ∈ {1, 2, 3}. Figure

3-4 shows the trajectories of individual points 𝑥𝑖 obtained as result of their interaction

with a discriminator (domain-classifier). The left panel corresponds to a game with

92

a unary discriminator 𝐷(𝑥). We observe that, when any pair of points becomes

aligned the discriminator can still drive them apart. The right panel of Figure 3-4

shows the trajectories obtained by using objective (3.14) with a pairwise discriminator

𝐷(𝑥, 𝑦) = 𝜓 · |𝑥−𝑦|𝛾 . We observe that with objective (3.14) the alignment is preserved

for any pair of distributions. We provide the detailed specification of the toy example

in Appendix A.7.

3.6 Connections To Other Pairwise Objectives

In this section we discuss the connections and differences between PairGAN and other

GANs based on pairwise objectives. MMD-GAN [25, 144, 256] is built on Maximum

Mean Discrepancy [MMD, 84] and shares the same function space view as PairGAN

generator objective. From the point of view of (3.6), MMD-GAN operator 𝐴 specifies

a positive definite kernel: 𝐴(𝑥, 𝑦) = 𝑘(𝑥, 𝑦). In practice, this kernel is parameterized

by a neural network 𝐴(𝑥, 𝑦) = 𝑘(𝑓(𝑥), 𝑓(𝑦)), where a mapping 𝑓 is defined by a

deep network and a fixed kernel 𝑘 is applied to embeddings produced by 𝑓 . Clearly,

alignment stability identified in Section 3.4 holds for both PairGAN and MMD-GAN.

PairGAN does not, however, require the discriminator to define a positive definite

kernel, only a sufficient discriminator (see (3.11)). The corresponding operator needs

to be positive definite in the subspace 𝑊𝑞(𝜃
*) defined by the generator. In this

sense, PairGAN can be viewed as a parametric version of MMD-GAN. In contrast,

MMD-GAN requires the operator (kernel) to be positive definite in the entire function

space ℱ(𝒳). The use of kernels in PairGAN is straightforward but not necessary.

Suppose that in the minimization problem for loss (3.6) the generator 𝑞 is not

restricted to a parametric family and can define any density function in 𝒫(𝒳). If we

require for any infinitesimal perturbation of the aligned distribution 𝑞′ = 𝑝+ 𝜀 to be

“detectable” by operator 𝐴, we obtain a non-parametric version of condition (3.11):

⟨︀
𝜀 , 𝐴𝜀

⟩︀
> 0, ∀ 𝜀 : 𝜀 ̸= 0,

⟨︀
𝜀 , 𝑒

⟩︀
= 0, 𝑝(𝑥) + 𝜀(𝑥) ≥ 0 ∀𝑥, (3.15)

93

where the last two conditions ensure that 𝑞′ = 𝑝+ 𝜀 is a valid density.

Condition (3.15) is a relaxed version of the condition (3.11), since, for a valid

parameterization of 𝑞, any 𝜀 ∈ 𝑊𝑞(𝜃
*) defines a valid density 𝑞′. Put another way,

we can contrast the difference between non-parametric (MMD-GAN) and parametric

(PairGAN) cases.

• Non-parametric: the perturbation of 𝑞* is not restricted by a parameterization;

a sufficient operator𝐴 is required to be positive definite in the infinite-dimensional

space (i.e. 𝐴 is a kernel).

• Parametric: the perturbation of 𝑞* is restricted by a parameterization; a

sufficient operator 𝐴 is required to be positive definite only in finite-dimensional

subspace 𝑊𝑞(𝜃
*).

Thus, the notion of sufficient PairGAN discriminator naturally extends the notion of

positive definite kernel for a parametric case. Proposition 3.5.6 shows that the set of

sufficient discriminators is wider than the set of positive definite kernels.

In the Relativistic GAN [114], the discriminator is defined as a real-valued function

𝐷R(𝑥, 𝑦) = 𝐶(𝑥) − 𝐶(𝑦) which outputs relative “realness” score between samples 𝑥

and 𝑦. The game between the generator and discriminator is defined by the objectives

of the following form:

ℒ𝐷 = E𝑝×𝑞
[︀
𝑓1(𝐷R(𝑥, 𝑦))

]︀
+ E𝑞×𝑝

[︀
𝑓2(𝐷R(𝑥, 𝑦))

]︀
,

ℒ𝐺 = E𝑝×𝑞
[︀
𝑔1(𝐷R(𝑥, 𝑦))

]︀
+ E𝑞×𝑝

[︀
𝑔2(𝐷R(𝑥, 𝑦))

]︀
.

A major difference between the above objectives and PairGAN’s is the absence of

sampled pairs from the same distribution. PairGAN makes use of all combinations of

random pairs of samples from both generated and real distributions.

XORGAN [245] uses a probabilistic pair discriminator 𝐷(𝑥, 𝑦) to quantify whether

samples 𝑥, 𝑦 come from different distributions. The pair discriminator is defined based

on the optimal unary discriminator: 𝐷*
(𝑥, 𝑦) = 𝐷*(𝑥)·(1−𝐷*(𝑦))+(1−𝐷*(𝑥))·𝐷*(𝑦).

Tsirigotis et al. [245] maintain this functional form for the pair discriminator and

94

Table 3.1: Comparison of GAN FID curve statistics on CIFAR-10. We report min,
max, mean, std over checkpoints at steps 20k, 30k, . . .

Loss Min Max Mean SD

SGAN 29.49 41.20 31.56 2.24
RSGAN 31.27 40.26 34.12 1.68
RaSGAN 30.80 41.27 34.12 2.28
LSGAN 31.56 44.67 33.74 2.48
RaLSGAN 32.53 44.63 35.52 2.42
WGAN-GP 33.43 48.78 35.00 2.71
MMD-GAN 44.84 64.54 51.19 4.92
XORGAN 32.62 52.17 37.40 4.24
PairSGAN 30.42 42.85 33.81 2.00

directly estimate the unary part using ℒ𝐷 = E𝑝[− log(𝐷(𝑥))] + E𝑞[− log(1−𝐷(𝑥))].

Compared to PairGAN, both relativistic GAN and XORGAN loss functions differ

from (3.6) and do not ensure alignment stability. Moreover, both formulations use

specific restricted families of pairwise discriminators.

3.7 Experiments

In this section we report the experimental results which evaluate the practical effec-

tiveness of PairGAN. Our experiments are aimed at answering the following questions

about the proposed model.

1. Do popular GAN models suffer from the alignment instability and can PairGAN

address the issue in a practical setting? (Section 3.7.1)

2. Does PairGAN deliver better stability along the full training trajectory (rather

than in closer to convergence situations only)? (Section 3.7.2)

3. Do the stability benefits of PairGAN translate into improved image generation

quality? (Section 3.7.2)

Baseline GAN models Here we provide a list of abbreviations of GAN model

names to use in the following sections. Unary GANs: non-saturating standard

GAN [SGAN, 78], LSGAN [160], HingeGAN [171], SpectralGAN [171], WGAN-GP

95

[87]. Pairwise GANs: Relativistic GAN [114] and its variants (RSGAN, RaSGAN,

RaLSGAN, RSGAN-GP, RaSGAN-GP), MMD-GAN [144], XORGAN [245].

3.7.1 Fixed Generator Matching

Our goal is to check whether the alignment instability indeed occurs in GANs. However,

to assess this phenomenon in a realistic practical setting comes with definite challenges:

• Strictly speaking alignment instability would occur around where the generator

aligns well with the real data. For a generator, parameterized by a deep neural

network, one cannot easily verify that a given parameterization allows 𝑞𝜃 ≈ 𝑝.

• There are no clearly established alignment/misalignment measures in generative

modeling problems such as image generation.

Below we describe a controlled experiment on a deep architecture and a complex

target distribution which avoids these complications.

We consider a DCGAN generator [200]. The generator defines a distribution 𝑞𝜃

is parameterized by a vector 𝜃 ∈ R𝑁 whose elements are all trainable weights of the

generator network listed in some fixed order. We pre-train DCGAN on CIFAR-10

[130] and extract the weights 𝜃* of the pre-trained generator. Now, we define the

target distribution 𝑝 in our controlled problem as 𝑝 ≜ 𝑞𝜃* and train another instance of

the generator 𝑞𝜃 on the samples from 𝑞𝜃* . This problem setting allows us to test GAN

models on close-to-real complex target distribution while ensuring the existence of the

perfectly aligned solution 𝑞𝜃* in the chosen parametric family 𝒬 = {𝑞𝜃 | 𝜃 ∈ R𝑁}. We

propose to use the parameter space distance ‖𝜃 − 𝜃*‖2 as a measure of misalignment

between the distributions 𝑞𝜃 and 𝑞𝜃* . However, we need to take into account the

flexibility of the generator and avoid situations where the target distribution can be

represented by two distinct settings of weights. In order to overcome this problem, after

pre-training we restrict the parameters of the trainable network 𝜃 to one-dimensional

line 𝜃(𝛼) = 𝜃* + 𝛼 · 𝑣, where 𝛼 ∈ R is a single real valued parameter and 𝑣 ∈ R𝑁 is

a random unit vector with ‖𝑣‖2 = 1. In this parameterization, 𝛼 = 0 corresponds

96

Table 3.2: Comparison of FID at step 100k on CIFAR-10 without batch normalization
in corresponding network. D: distriminator, G: generator.

Loss D G & D

SGAN 181.47 227.17
RSGAN 44.14 51.00
RaSGAN 47.63 54.28
PairSGAN 40.13 43.24

to the optimal solution 𝜃(0) = 𝜃* and |𝛼| = ‖𝜃(𝛼) − 𝜃*‖2 is a natural measure of

misalignment.

Using the problem setting and generator parameterization described above, we

evaluate different GAN formulations with unary and pairwise discriminators. Our

considered formulations are PairSGAN, SGAN, RSGAN, and XORGAN. For each

model we use mini-batches sampled from the pre-trained generator to compute the

discriminator and generator losses. We train parameters in all layers of the discrimina-

tor and the single parameter 𝛼 of the generator with SGD. We provide further details

and used hyper-parameters for this experiment in Appendix A.8.1.

Figure 3-2 shows time-evolution of 𝛼 along the course of training for all models.

The obtained results agree with our analysis of alignment instability and follow the

pattern observed in toy example in Section 3.1, Figure 3-1. The alignment stability

guarantees of PairSGAN hold in the experiment and result in the trajectories of 𝛼

that are stable in the vicinity of 𝛼* = 0. SGAN with unary discriminator and pairwise

models without alignment stability guarantees (RGAN, XORGAN) repeatedly throw

the generator off the aligned position and deliver oscillating trajectories.

3.7.2 Real World Datasets

Apart from ensuring alignment stability, we aim to find out that if PairGAN is actually

a practical model for image generation. Here, we discuss our experiments conducted

on CIFAR-10 [130] and CAT dataset [276]. For both datasets, we utilize DCGAN [200]

architecture with specific implementation details discussed in Appendix A.8.2. For

specific instances of PairGAN, we make the same choice as in previous sections, namely

97

20K 40K 60K 80K 100K

steps

40

60

80

100

120

140

160

180
F

ID
No BN in D

20K 40K 60K 80K 100K

steps

50

75

100

125

150

175

200

225

F
ID

No BN in D and G

SGAN RSGAN RaSGAN PairSGAN

Figure 3-5: FID training curves on CIFAR-10 for DCGAN models without batch
normalization (BN) layers in discriminator or both discriminator (D) and generator
(G) networks.

40K 80K 120K 160K 200K

steps

10

15

20

25

30

35

40

F
ID

CAT 64x64

20K 40K 60K 80K 100K

steps

20

30

40

50

60

F
ID

CAT 128x128

SGAN PairSGAN

20K 40K 60K 80K 100K

steps

50

100

150

200

250

300
F

ID

CAT 256x256

Figure 3-6: FID training curves for SGAN (blue) and PairSGAN (red) on CAT dataset
for different resolutions.

PairSGAN. On CIFAR-10, We compare PairSGAN with some popular unary objectives

(SGAN, LSGAN, WGAN-GP) and pairwise objectives of interests (RSGAN, RaSGAN,

RaLSGAN, MMD-GAN and XORGAN). On CAT, since Jolicoeur-Martineau [114]

utilizes the exact same architecture, we directly take their reported results as baselines

(except for SGAN, which we replace with our fixed stable implementation3). Similar
3The baseline for SGAN provided in Jolicoeur-Martineau [114] uses a numerically unstable

implementation of the cross-entropy loss

98

Table 3.3: Comparison of minimum, maximum, mean, and standard deviation of FID
at steps 20k, 30k, ... on CAT dataset. ‘—’ means model becomes stuck in the first few
iterations. Baseline results denoted with (*) were extracted from Jolicoeur-Martineau
[114], not independently run in our experiments.

64× 64 images

Loss Min Max Mean SD

SGAN 12.27 24.62 16.99 4.07
RSGAN* 19.03 42.05 32.16 7.01
RaSGAN* 15.38 33.11 20.53 5.68
LSGAN* 20.27 224.97 73.62 61.02
RaLSGAN* 11.97 19.29 15.61 2.55
HingeGAN* 17.60 50.94 32.23 14.44
RaHingeGAN* 14.62 27.31 20.29 3.96
RSGAN-GP* 16.41 22.34 18.20 1.82
RaSGAN-GP* 17.32 22 19.58 1.81
PairSGAN 10.28 18.21 13.55 2.24

128× 128 images

Loss Min Max Mean SD

SGAN 19.88 38.68 28.91 6.73
RaSGAN* 21.05 39.65 28.53 6.52
LSGAN* 19.03 51.36 30.28 10.16
RaLSGAN* 15.85 40.26 22.36 7.53
PairSGAN 16.72 25.66 21.43 2.94

256× 256 images

SGAN 43.30 324.38 171.42 108.47
RaSGAN* 32.11 102.76 56.64 21.03
SpectralSGAN* 54.08 90.43 64.92 12.00
LSGAN* — — — —
RaLSGAN* 35.21 299.52 70.44 86.01
WGAN-GP* 155.46 437.48 341.91 101.11
PairSGAN 33.94 50.52 41.70 5.23

to the quantitative evaluations presented in Jolicoeur-Martineau [114], we report the

minimum, maximum, mean and standard deviation of FID [94] calculated across

generator steps 20k, 30k, . . . for one run with a predefined seed. We run 500k steps

for CIFAR-10 and 100k steps for CAT. Respective results can be found in Table 3.1

and Table 3.3.

On CIFAR-10, we notice that almost all methods perform similarly under the

99

standard experiment with controls (e.g. batch normalization) that are designed for

training unary GANs. To investigate the effects provided by PairGAN, we conduct

more experiments in cleaner setting (less controls). In particular, we drop the batch

normalization in discriminator or both generator and discriminator and we compare

the performance of SGAN, RSGAN, RaSGAN and PairSGAN (all are variations of

SGAN). Results of this experiments are summarized in Table 3.2 and Figure 3-5. We

observe that although SGAN’s performance in the standard setting is one of the best

among the baselines, it does so by relying on aforementioned controls more, whereas

PairSGAN can still generate good images in this harder setting. We think this shows

the potential of PairGAN that once the controls specifically designed for it are in

place, its theoretical benefits can translate into practical gains.

On CAT dataset, we change the parameterization of the pairwise discriminator used

in the CIFAR-10 experiment (details in Appendix A.8.2) as we find this modification

benefits training. As results shown in Table 3.3 and FID trajectory with SGAN and

PairSGAN in Figure 3-6, we find that PairSGAN improves both performance and

stability.

100

Chapter 4

Adversarial Support Alignment

4.1 Introduction

Learning tasks often involve estimating properties of distributions from samples or

aligning such characteristics across domains. We can align full distributions (adversarial

domain alignment), certain statistics (canonical correlation analysis), or the support of

distributions (this paper). Much of the recent work has focused on full distributional

alignment, for good reasons. In domain adaptation, motivated by theoretical results

[12, 13], a series of papers [3, 72, 73, 132, 145, 191, 224, 246, 255, 277] seek to align

distributions of representations between domains, and utilize a shared classifier on the

aligned representation space.

Alignment in distributions implies alignment in supports. However, when there are

additional objectives/constraints to satisfy, the minimizer for a distribution alignment

objective does not necessarily minimize a support alignment objective. Example in

Figure 4-1 demonstrates the qualitative distinction between two minimizers when

distribution alignment is not achievable. The distribution alignment objective prefers

to keep supports unaligned even if support alignment is achievable. Recent works

[143, 238, 239, 262, 278] have demonstrated that a shift in label distributions between

source and target leads to a characterizable performance drop when the representations

are forced into a distribution alignment. The error bound in Johansson et al. [113]

suggests aligning the supports of representations instead.

101

In this chapter, we focus on distribution support as the key characteristic to align.

We introduce a support divergence to measure the support mismatch and algorithms

to optimize such alignment. We also position our approach in the spectrum of other

alignment methods. Our contributions are as follows (all proofs can be found in

Appendix B.1):

1. In Section 4.2.1, we measure the differences between supports of distributions.

Building on the Hausdorff distance, we introduce a novel support divergence

better suited for optimization, which we refer to as symmetric support difference

(SSD) divergence.

2. In Section 4.2.2, we identify an important property of the discriminator trained for

Jensen–Shannon divergence: support differences in the original space of interest

are “preserved” as support differences in the one-dimensional discriminator output

space.

3. In Section 4.3, we present our practical algorithm for support alignment, Adver-

sarial Support Alignment (ASA). Essentially, based on the analysis presented in

Section 4.2.2, our solution is to align supports in the discriminator 1D space,

which is computationally efficient.

4. In Section 4.4, we place different notions of alignment – distribution align-

ment, relaxed distribution alignment and support alignment – within a coherent

spectrum from the point of view of optimal transport, characterizing their rela-

tionships, both theoretically in terms of their objectives and practically in terms

of their algorithms.

5. In Section 4.6, we demonstrate the effectiveness of support alignment in practice

for domain adaptation setting. Compared to other alignment-based baselines,

our proposed method is more robust against shifts in label distributions.

102

−3 −2 −1 0 1
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
en

si
ty

p(x)

qθ(x)

(a) Initialization
𝒟𝑊 (𝑝, 𝑞𝜃) = 11.12
𝒟△(𝑝, 𝑞𝜃) = 14.9

0.0 0.2 0.4 0.6 0.8 1.0 1.2
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(b) Distribution alignment
𝒟𝑊 (𝑝, 𝑞𝜃) = 2 · 10−3

𝒟△(𝑝, 𝑞𝜃) = 6 · 10−4

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(c) Support alignment
𝒟𝑊 (𝑝, 𝑞𝜃) = 5 · 10−2

𝒟△(𝑝, 𝑞𝜃) < 1 · 10−6

Figure 4-1: Illustration of differences between the final configurations of distribu-
tion alignment and support alignment procedures. 𝑝(𝑥) is a fixed Beta distribu-
tion 𝑝(𝑥) = Beta(𝑥 | 4, 2) with support [0, 1]; 𝑞𝜃(𝑥) is a “shifted” Beta distribution
𝑞𝜃(𝑥) = Beta(𝑥− 𝜃 | 2, 4) parameterized by 𝜃 with support [𝜃, 𝜃 + 1]. Panel (a) shows
the initial configuration with 𝜃init = −3. Panel (b) shows the result by distribution
alignment. Panel (c) shows the result by support alignment. We report Wasserstein
distance 𝒟𝑊 (𝑝, 𝑞𝜃) (4.8) and SSD divergence 𝒟△(𝑝, 𝑞𝜃) (4.1).

4.2 SSD divergence and support alignment

Notation. We consider an Euclidean space 𝒳 = R𝑛 equipped with Borel sigma

algebra ℬ and a metric 𝑑 : 𝒳 ×𝒳 → R (e.g. Euclidean distance). Let 𝒫 be the set of

probability measures on (𝒳 ,ℬ). For 𝑝 ∈ 𝒫, the support of 𝑝 is denoted by supp(𝑝)

and is defined as the smallest closed set 𝑋 ⊆ 𝒳 such that 𝑝(𝑋) = 1. 𝑓♯𝑝 denotes the

pushforward measure of 𝑝 induced by a measurable mapping 𝑓 . With a slight abuse

of notation, we use 𝑝(𝑥) and [𝑓♯𝑝](𝑡) to denote the densities of measures 𝑝 and 𝑓♯𝑝

evaluated at 𝑥 and 𝑡 respectively, implicitly assuming that the measures are absolutely

continuous. The distance between a point 𝑥 ∈ 𝒳 and a subset 𝑌 ⊆ 𝒳 is defined as

𝑑(𝑥, 𝑌) = inf𝑦∈𝑌 𝑑(𝑥, 𝑦). The symmetric difference of two sets 𝐴 and 𝐵 is defined as

𝐴△𝐵 = (𝐴 ∖𝐵) ∪ (𝐵 ∖ 𝐴).

4.2.1 Difference between supports

To align the supports of distributions, we first need to evaluate how different they

are. Similar to distribution divergences like Jensen–Shannon divergence, we introduce

103

a notion of support divergence. A support divergence1 between two distributions in

𝒫 is a function 𝒟𝑆(·, ·) : 𝒫 × 𝒫 → R satisfying: 1) 𝒟𝑆(𝑝, 𝑞) ≥ 0 for all 𝑝, 𝑞 ∈ 𝒫; 2)

𝒟𝑆(𝑝, 𝑞) = 0 iff supp(𝑝) = supp(𝑞).

While a distribution divergence is sensitive to both density and support differences,

a support divergence only needs to detect mismatches in supports, which are subsets

of the metric space 𝒳 . An example of a distance between subsets of a metric space

is the Hausdorff distance: 𝑑𝐻(𝑋, 𝑌) = max{sup𝑥∈𝑋 𝑑(𝑥, 𝑌), sup𝑦∈𝑌 𝑑(𝑦,𝑋)}. Since

it depends only on the greatest distance between a point and a set, minimizing this

objective for alignment only provides signal to a single point. To make the optimization

less sparse, we consider all points that violate the support alignment criterion and

introduce symmetric support difference (SSD) divergence:

𝒟△(𝑝, 𝑞) = E𝑥∼𝑝 [𝑑(𝑥, supp(𝑞))] + E𝑥∼𝑞 [𝑑(𝑥, supp(𝑝))] . (4.1)

Proposition 4.2.1. SSD divergence 𝒟△(𝑝, 𝑞) is a support divergence.

We note that our proposed SSD divergence is closely related to Chamfer dis-

tance/divergence (CD) [69, 180] and Relaxed Word Mover’s Distance (RWMD) [133].

While both CD and RWMD are stated for discrete points (see Section 4.5 for further

comments), SSD divergence is a general difference measure between arbitrary (dis-

crete or continuous) distributions. This distinction, albeit small, is important in our

theoretical analysis (Sections 4.2.2, 4.4.1).

4.2.2 Support Alignment in One-Dimensional Space

Goodfellow et al. [78] showed that the log-loss discriminator 𝑓 : 𝒳 → [0, 1],

trained to distinguish samples from distributions 𝑝 and 𝑞 (sup𝑓 E𝑥∼𝑝 [log 𝑓(𝑥)] +

E𝑥∼𝑞 [log(1− 𝑓(𝑥))]) can be used to estimate the Jensen–Shannon divergence between

1It is not technically a divergence on the space of distributions, since 𝒟𝑆(𝑝, 𝑞) = 0 does not imply
𝑝 = 𝑞.

104

𝑝 and 𝑞. The closed form maximizer 𝑓 * is

𝑓 *(𝑥) =
𝑝(𝑥)

𝑝(𝑥) + 𝑞(𝑥)
, ∀𝑥 ∈ supp(𝑝) ∪ supp(𝑞). (4.2)

Note that for a point 𝑥 /∈ supp(𝑝) ∪ supp(𝑞) the value of 𝑓 *(𝑥) can be set to an

arbitrary value in [0, 1], since the log-loss does not depend on 𝑓(𝑥) for such 𝑥. The

form of the optimal discriminator (4.2) gives rise to our main theorem below, which

characterizes the ability of the log-loss discriminator to identify support misalignment.

Theorem 4.2.2. Suppose distributions 𝑝 and 𝑞 have densities satisfying

1

𝐶
< 𝑝(𝑥) < 𝐶, ∀𝑥 ∈ supp(𝑝);

1

𝐶
< 𝑞(𝑥) < 𝐶, ∀𝑥 ∈ supp(𝑞). (4.3)

Let 𝑓 * be the optimal discriminator (4.2). Then, 𝒟△(𝑝, 𝑞) = 0 if and only if

𝒟△(𝑓 *
♯𝑝, 𝑓

*
♯𝑞) = 0.

The idea of the proof is to show that the extreme values (0 and 1) of 𝑓 *(𝑥) can

only be attained in 𝑥 ∈ supp(𝑝)△ supp(𝑞). Assumption (4.3) guarantees that 𝑓 *(𝑥)

cannot approach neither 0 nor 1 in the intersection of the supports supp(𝑝) ∩ supp(𝑞),

i.e. the values {𝑓 *(𝑥) |𝑥 ∈ supp(𝑝) ∩ supp(𝑞)} are separated from the extreme values

0 and 1.

We conclude this section with two technical remarks on Theorem 4.2.2.

Remark 4.2.3. The result of Theorem 4.2.2 does not necessarily hold for other types

of discriminators. For instance, the dual Wasserstein discriminator [9, 87] does not

always highlight the support difference in the original space as a support difference in

the discriminator output space. This observation is formaly stated in the following

proposition.

Proposition 4.2.4. Let 𝑓 ⋆𝑊 be the maximizer of sup𝑓 :L(𝑓)≤1 E𝑥∼𝑝[𝑓(𝑥)] − E𝑥∼𝑞[𝑓(𝑥)],

where L(·) is the Lipschitz constant. There exist 𝑝 and 𝑞 with supp(𝑝) ̸= supp(𝑞) but

supp(𝑓 ⋆𝑊 ♯𝑝) = supp(𝑓 ⋆𝑊 ♯𝑞).

Recent works [52, 53] have proposed to perform optimal transport (OT)-based

distribution alignment by reducing the OT problem (4.8) in the original, potentially

105

high-dimensional space, to that between 1D distributions. Specifically, Deshpande

et al. [52] consider the sliced Wasserstein distance [199]:

𝒟𝑆𝑊 (𝑝, 𝑞) =

∫︁
S𝑛−1

𝒟𝑊 (𝑓 𝜃♯𝑝, 𝑓
𝜃
♯𝑞) 𝑑𝜃, (4.4)

where S𝑛−1 = {𝜃 ∈ R𝑛 | ‖𝜃‖ = 1} is a unit sphere in R𝑛, and 𝑓 𝜃 is a 1D linear

projection 𝑓 𝜃(𝑥) = ⟨𝜃, 𝑥⟩. It is known that 𝒟𝑆𝑊 is a valid distribution divergence: for

any 𝑝 ̸= 𝑞 there exists a linear slicing function 𝑓 𝜃 , 𝜃 ∈ S𝑛−1 which identifies difference

in the distributions, i.e. 𝑓 𝜃♯𝑝 ≠ 𝑓 𝜃♯𝑞 (Cramér–Wold theorem). By reducing the original

OT problem to that in a 1D space, Wu et al. [260] and Deshpande et al. [53] develop

efficient practical methods for distribution alignment based on fast algorithms for the

1D OT problem.

Unfortunately, the straight-forward extension of SSD divergence (4.1) to a 1D

linearly sliced version does not provide a valid support divergence.

Proposition 4.2.5. There exist two distributions 𝑝 and 𝑞 in 𝒫, such that supp(𝑝) ̸=
supp(𝑞) but supp(𝑓 𝜃♯𝑝) = supp(𝑓 𝜃♯𝑞), ∀𝑓 𝜃(𝑥) = ⟨𝜃, 𝑥⟩ with 𝜃 ∈ S𝑛−1.

−2 −1 0 1 2

−2

−1

0

1

2

p(x)

−2 −1 0 1 2

−2

−1

0

1

2

q(x)

Figure 4-2: Visualization of example distributions for Proposition 4.2.5

Proof. Consider a 2-dimensional Euclidean space R2 and let supp(𝑝) = {(𝑥, 𝑦)|𝑥2+𝑦2 ≤
2} and supp(𝑞) = {(𝑥, 𝑦)|1 ≤ 𝑥2 + 𝑦2 ≤ 2}. Then, ∀𝑓 𝜃(𝑥) = ⟨𝜃, 𝑥⟩ with 𝜃 ∈ S1,

supp(𝑓 𝜃♯𝑝) = supp(𝑓 𝜃♯𝑞) = [−2, 2].

This counterexample is shown in Figure 4-2.

106

Remark 4.2.6. In practice the discriminator is typically parameterized as 𝑓(𝑥) =

𝜎(𝑔(𝑥)), where 𝑔 : 𝒳 → R is realized by a deep neural network and 𝜎(𝑥) = (1 + 𝑒−𝑥)−1

is the sigmoid function. The optimization problem for 𝑔 is

inf
𝑔

E𝑥∼𝑝
[︀
log(1 + 𝑒−𝑔(𝑥))

]︀
+ E𝑥∼𝑞

[︀
log(1 + 𝑒𝑔(𝑥))

]︀
, (4.5)

and the optimal solution is 𝑔*(𝑥) = log 𝑝(𝑥) − log 𝑞(𝑥). Naturally the result of

Theorem 4.2.2 holds for 𝑔*, since 𝑔*(𝑥) = 𝜎−1(𝑓 *(𝑥)) and 𝜎 is a bijective mapping

from R ∪ {−∞,∞} to [0, 1].

4.3 Adversarial Support Alignment

We consider distributions 𝑝 and 𝑞 parameterized by 𝜃: 𝑝𝜃, 𝑞𝜃. The log-loss discriminator

𝑔 optimized for (4.5) is parameterized by 𝜓: 𝑔𝜓. Our analysis in Section 4.2.2 already

suggests an algorithm. Namely, we can optimize 𝜃 by minimizing 𝒟△(𝑔𝜓♯𝑝
𝜃, 𝑔𝜓♯𝑞

𝜃)

while optimizing 𝜓 by (4.5). This adversarial game is analogous to the setup of the

existing distribution alignment algorithms2.

In practice, rather than having direct access to 𝑝𝜃, 𝑞𝜃, which is unavailable,

we are often given i.i.d. samples {𝑥𝑝𝑖 }𝑁𝑖=1, {𝑥𝑞𝑖}𝑀𝑖=1. They form discrete distri-

butions �̂�𝜃(𝑥) = 1
𝑁

∑︀𝑁
𝑖=1 𝛿(𝑥 − 𝑥𝑝𝑖), �̂�

𝜃(𝑥) = 1
𝑀

∑︀𝑀
𝑖=1 𝛿(𝑥 − 𝑥𝑞𝑖), and [𝑔𝜓♯�̂�

𝜃](𝑡) =

1
𝑁

∑︀𝑁
𝑖=1 𝛿(𝑡 − 𝑔𝜓(𝑥𝑝𝑖)), [𝑔

𝜓
♯�̂�
𝜃](𝑡) = 1

𝑀

∑︀𝑀
𝑖=1 𝛿(𝑡 − 𝑔𝜓(𝑥𝑞𝑖)). Since 𝑔𝜓♯�̂�

𝜃 and 𝑔𝜓♯�̂�
𝜃 are

discrete distributions, they have supports {𝑔𝜓(𝑥𝑝𝑖)}𝑁𝑖=1 and {𝑔𝜓(𝑥𝑞𝑖)}𝑀𝑖=1 respectively.

SSD divergence between discrete distributions 𝑔𝜓♯�̂�
𝜃 and 𝑔𝜓♯�̂�

𝜃 is

𝒟△(𝑔𝜓♯�̂�
𝜃, 𝑔𝜓♯�̂�

𝜃) =
1

𝑁

𝑁∑︁
𝑖=1

𝑑
(︀
𝑔𝜓(𝑥𝑝𝑖), {𝑔𝜓(𝑥𝑞𝑗)}𝑀𝑗=1

)︀
+

1

𝑀

𝑀∑︁
𝑖=1

𝑑
(︀
𝑔𝜓(𝑥𝑞𝑖), {𝑔𝜓(𝑥𝑝𝑗)}𝑁𝑗=1

)︀
. (4.6)

2Following existing adversarial distribution alignment methods, e.g. [78], we use single update of
𝜓 per 1 update of 𝜃. While theoretical analysis for both distribution alignment and support alignment
(ours) assume optimal discriminators, training with single update of 𝜓 is computationally cheap and
effective.

107

Effect of mini-batch training. When training on large datasets, we need to

rely on stochastic optimization with mini-batches. We denote the mini-batches (of

same size, as in common practice) from 𝑝𝜃 and 𝑞𝜃 as 𝑥𝑝 = {𝑥𝑝𝑖 }𝑚𝑖=1 and 𝑥𝑞 = {𝑥𝑞𝑖}𝑚𝑖=1

respectively. By minimizing 𝒟△(𝑔𝜓(𝑥𝑝), 𝑔𝜓(𝑥𝑞)), we only consider the mini-batch

support distance rather than the population support distance (4.6). We observe

that in practice the described algorithm brings the distributions to a state closer to

distribution alignment rather than support alignment (see Appendix 4.6 for details).

The problem is in the typically small batch size. The algorithm actually aims to

enforce support alignment for all possible pairs of mini-batches, which is a much

stricter constraint than population support alignment.

To address the issue mentioned above, without working with a much larger batch

size, we create two “history buffers”: ℎ𝑝, storing the previous 1D discriminator outputs

of (at most) 𝑛 samples from 𝑝𝜃, and a similar buffer ℎ𝑞 for 𝑞𝜃. Specifically, ℎ =

{𝑔𝜓old,𝑖(𝑥old,𝑖)}𝑛𝑖=1 stores the values of the previous 𝑛 samples 𝑥old,𝑖 mapped by their

corresponding past “versions” of the discriminator 𝑔𝜓old,𝑖 . We minimize 𝒟△(𝑣𝑝, 𝑣𝑞),

where 𝑣𝑝 = concat(ℎ𝑝, 𝑔𝜓(𝑥𝑝)), 𝑣𝑞 = concat(ℎ𝑞, 𝑔𝜓(𝑥𝑞)):

𝒟△(𝑣𝑝, 𝑣𝑞) =
1

𝑛+𝑚

(︃
𝑛+𝑚∑︁
𝑖=1

𝑑(𝑣𝑝𝑖 , 𝑣
𝑞) +

𝑛+𝑚∑︁
𝑗=1

𝑑(𝑣𝑞𝑗 , 𝑣
𝑝)

)︃
. (4.7)

Note that 𝒟△(·, ·) between two sets of 1D samples can be efficiently calculated since

𝑑(𝑣𝑝𝑖 , 𝑣
𝑞) and 𝑑(𝑣𝑞𝑗 , 𝑣

𝑝) are simply 1-nearest neighbor distances in 1D. Moreover the

history buffers store only the scalar values from the previous batches. These values are

only considered in nearest neighbor assignment but do not directly provide gradient

signal for optimization. Thus, the computation overhead of including a long history

buffer is very light. We present our full algorithm, Adversarial Support Alignment

(ASA), in Algorithm 1.

108

Algorithm 1 Adversarial Support Alignment (ASA). 𝑛 (maximum history buffer
size), we use 𝑛 = 1000.
1: for number of training steps do
2: Sample mini-batches {𝑥𝑝𝑖 }𝑚𝑖=1 ∼ 𝑝𝜃, {𝑥𝑞𝑖}𝑚𝑖=1 ∼ 𝑞𝜃.
3: Perform optimization step on 𝜓 using stochastic gradient

∇𝜓

(︂
1
𝑚

𝑚∑︀
𝑖=1

[︁
log(1 + exp(−𝑔𝜓(𝑥𝑝𝑖))) + log(1 + exp(𝑔𝜓(𝑥𝑞𝑖)))

]︁)︂
.

4: 𝑣𝑝 ← concat(ℎ𝑝, {𝑔𝜓(𝑥𝑝𝑖)}𝑚𝑖=1), 𝑣𝑞 ← concat(ℎ𝑞, {𝑔𝜓(𝑥𝑞𝑖)}𝑚𝑖=1).
5: 𝜋𝑖𝑝→𝑞 ← argmin𝑗 𝑑(𝑣𝑝𝑖 , 𝑣

𝑞
𝑗), 𝜋𝑗𝑞→𝑝 ← argmin𝑖 𝑑(𝑣𝑝𝑖 , 𝑣

𝑞
𝑗).

6: Perform optimization step on 𝜃 using stochastic gradient

∇𝜃

(︂
1

𝑛+𝑚

𝑛+𝑚∑︀
𝑖=1

[︁
𝑑(𝑣𝑝𝑖 , 𝑣

𝑞
𝜋𝑖𝑝→𝑞

) + 𝑑(𝑣𝑞𝑖 , 𝑣
𝑝
𝜋𝑖𝑞→𝑝

)
]︁)︂

.

7: UpdateHistory(ℎ𝑝, {𝑔𝜓(𝑥𝑝𝑖)}𝑚𝑖=1), UpdateHistory(ℎ𝑞, {𝑔𝜓(𝑥𝑞𝑖)}𝑚𝑖=1).
8: end for

4.4 Spectrum of Notions of Alignment

In this section, we take a closer look into our work and different existing notions of

alignment that have been proposed in the literature, especially their formulations from

the optimal transport perspective. We show that our proposed support alignment

framework is a limit of existing notions of alignment, both in terms of theory and

algorithm, by increasing transportation assignment tolerance.

4.4.1 Theoretical connections

Distribution alignment. Wasserstein distance is a commonly used objective for

distribution alignment. In our analysis, we focus on the Wasserstein-1 distance:

𝒟𝑊 (𝑝, 𝑞) = inf
𝛾∈Γ(𝑝,𝑞)

E(𝑥,𝑦)∼𝛾[𝑑(𝑥, 𝑦)], (4.8)

where Γ(𝑝, 𝑞) is the set of all measures on 𝒳 ×𝒳 with marginals of 𝑝 and 𝑞, respectively.

The value of 𝒟𝑊 (𝑝, 𝑞) is the minimal transportation cost for transporting probability

mass from 𝑝 to 𝑞. The transportation cost is zero if and only if 𝑝 = 𝑞, meaning the

distributions are aligned.

Relaxed distribution alignment. Wu et al. [262] proposed a modified Wasser-

stein distance to achieve asymmetrically-relaxed distribution alignment, namely 𝛽-

109

admissible Wasserstein distance:

𝒟𝛽𝑊 (𝑝, 𝑞) = inf
𝛾∈Γ𝛽(𝑝,𝑞)

E(𝑥,𝑦)∼𝛾[𝑑(𝑥, 𝑦)], (4.9)

where Γ𝛽(𝑝, 𝑞) is the set of all measures 𝛾 on 𝒳 × 𝒳 such that
∫︀
𝛾(𝑥, 𝑦)𝑑𝑦 = 𝑝(𝑥),∀𝑥

and
∫︀
𝛾(𝑥, 𝑦)𝑑𝑥 ≤ (1 + 𝛽)𝑞(𝑦),∀𝑦. With the relaxed marginal constraints, one could

choose a transportation plan 𝛾 which transports probability mass from 𝑝 to a modified

distribution 𝑞′ rather than the original distribution 𝑞 as long as 𝑞′ satisfies the constraint

𝑞′(𝑥) ≤ (1+𝛽)𝑞(𝑥), ∀𝑥. Therefore, 𝒟𝛽𝑊 (𝑝, 𝑞) is zero if and only if 𝑝(𝑥) ≤ (1+𝛽)𝑞(𝑥),∀𝑥.
In [262], 𝛽 is normally set to a positive finite number to achieve the asymmetric-

relaxation of distribution alignment, and it is shown that 𝒟0
𝑊 (𝑝, 𝑞) = 𝒟𝑊 (𝑝, 𝑞). We can

extend 𝒟𝛽𝑊 (𝑝, 𝑞) to a symmetric version, which we term 𝛽1, 𝛽2-admissible Wasserstein

distance:

𝒟𝛽1,𝛽2𝑊 (𝑝, 𝑞) = 𝒟𝛽1𝑊 (𝑝, 𝑞) +𝒟𝛽2𝑊 (𝑞, 𝑝). (4.10)

The aforementioned property of 𝛽-admissible Wasserstein distance implies that

𝒟𝛽1,𝛽2𝑊 (𝑝, 𝑞) = 0 if and only if 𝑝(𝑥) ≤ (1 + 𝛽1)𝑞(𝑥),∀𝑥 and 𝑞(𝑥) ≤ (1 + 𝛽2)𝑝(𝑥),∀𝑥, in

which case we call 𝑝 and 𝑞 “(𝛽1, 𝛽2)-aligned”, with 𝛽1 and 𝛽2 controlling the trans-

portation assignment tolerances.

Support alignment. The term E𝑝[𝑑(𝑥, supp(𝑞))] in (4.1) represents the average

distance from samples in 𝑝 to the support of 𝑞. From the optimal transport perspective,

this value is the minimal transportation cost of transporting the probability mass

of 𝑝 into the support of 𝑞. We show that SSD divergence can be considered as a

transportation cost in the limit of infinite assignment tolerance.

Proposition 4.4.1. 𝒟∞,∞
𝑊 (𝑝, 𝑞) := lim𝛽1,𝛽2→∞𝒟𝛽1,𝛽2𝑊 (𝑝, 𝑞) = 𝒟△(𝑝, 𝑞).

We now have completed the spectrum of alignment objectives defined within the

optimal transport framework. The following proposition establishes the relationship

within the spectrum.

Proposition 4.4.2. Let 𝑝 and 𝑞 be two distributions in 𝒫. Then,

1. 𝒟𝑊 (𝑝, 𝑞) = 0 implies 𝒟𝛽1,𝛽2𝑊 (𝑝, 𝑞) = 0 for all finite 𝛽1, 𝛽2 > 0.

110

2. 𝒟𝛽1,𝛽2𝑊 (𝑝, 𝑞) = 0 for some finite 𝛽1, 𝛽2 > 0 implies 𝒟△(𝑝, 𝑞) = 0.

3. The converse of statements 1 and 2 are false.

In addition to the result presented in Theorem 4.2.2, we can show that the log-loss

discriminator can also “preserve” the existing notions of alignment.

Proposition 4.4.3. Let 𝑓 * be the optimal discriminator (4.2) for given distributions

𝑝 and 𝑞. Then,

1. 𝒟𝑊 (𝑝, 𝑞) = 0 iff 𝒟𝑊 (𝑓 *
♯𝑝, 𝑓

*
♯𝑞) = 0;

2. 𝒟𝛽1,𝛽2𝑊 (𝑝, 𝑞) = 0 iff 𝒟𝛽1,𝛽2𝑊 (𝑓 *
♯𝑝, 𝑓

*
♯𝑞) = 0.

The proof of this result, provided in Appendix B.1.7, is based on the following

property of pushforward distributions 𝑓 *
♯𝑝 and 𝑓 *

♯𝑞.

Proposition 4.4.4. Let 𝑓 * be the optimal log-loss discriminator (4.2) between 𝑝 and

𝑞. Then,

[𝑓 *
♯𝑝](𝑡)

[𝑓 *
♯𝑝](𝑡) + [𝑓 *

♯𝑞](𝑡)
= 𝑡, ∀ 𝑡 ∈ supp(𝑓 *

♯𝑝) ∪ supp(𝑓 *
♯𝑞). (4.11)

Intuitively, this proposition states the following. If for some 𝑥 ∈ 𝒳 we have

𝑓 *(𝑥) = 𝑡 ∈ [0, 1], 𝑡 directly corresponds to the ratio of densities not only in the

original space 𝑡 = 𝑝(𝑥)/(𝑝(𝑥) + 𝑞(𝑥)), but also in the 1D discriminator output space

𝑡 = [𝑓 *
♯𝑝](𝑡)/([𝑓

*
♯𝑝](𝑡) + [𝑓 *

♯𝑞](𝑡)). Figure 4-3 provides a visual illustration of the

statement of the proposition.

4.4.2 Algorithmic connections

The result of Proposition 4.4.3 suggests methods similar to our ASA algorithm

presented in Section 4.3 can achieve different notions of alignment by minimizing

objectives discussed in Section 4.4.1 between the 1D pushforward distributions. We

consider the setup used in Section 4.3 but without history buffers to simplify the

analysis, as their usage is orthogonal to our discussion in this section.

111

Figure 4-3: Visual illustration of the statement of Proposition 4.4.4. The top-left panel
shows two example PDFs 𝑝(𝑥), 𝑞(𝑥) on closed interval [−2, 2]. The bottom-left panel
shows the optimal discriminator function 𝑓 *(𝑥) = 𝑝(𝑥)/(𝑝(𝑥) + 𝑞(𝑥)) as a function of 𝑥
on [−2, 2]. The top-right panel shows the PDFs [𝑓 *

♯𝑝](𝑡), [𝑓 *
♯𝑞](𝑡) of the pushforward

distributions 𝑓 *
♯𝑝, 𝑓 *

♯𝑞 induced by the discriminator mapping 𝑓 *. 𝑓 * maps [−2, 2] to
[0, 1] and [𝑓 *

♯𝑝], [𝑓 *
♯𝑞] are defined on [0, 1].

Consider point 𝑥1 ∈ [−2, 2]. The value 𝑓 *(𝑥1) characterizes the ratio of densi-
ties 𝑝(𝑥1)/(𝑝(𝑥1) + 𝑞(𝑥1)) at 𝑥1. For another point 𝑥2 mapped to the same value
𝑓 *(𝑥2) = 𝑓 *(𝑥1) = 𝑡1,2, the ratio of densities 𝑝(𝑥2)/(𝑝(𝑥2) + 𝑞(𝑥2)) is the same as
𝑝(𝑥1)/(𝑝(𝑥1) + 𝑞(𝑥1)). All points 𝑥 mapped to 𝑡1,2 share the same ratio of the densities
𝑝(𝑥)/(𝑝(𝑥) + 𝑞(𝑥)). This fact implies that the ratio of the pushforward densities
[𝑓 *

♯𝑝](𝑡1,2)/([𝑓
*
♯𝑝](𝑡1,2) + [𝑓 *

♯𝑞](𝑡1,2)) at 𝑡1,2 must be the same as the ratio of densities
𝑝(𝑥1)/(𝑝(𝑥1) + 𝑞(𝑥1)) = 𝑡1,2 at 𝑥1 (or 𝑥2). The pushforward PDFs [𝑓 *

♯𝑞](𝑡), [𝑓 *
♯𝑞](𝑡)

satisfy property [𝑓 *
♯𝑝](𝑡)/([𝑓 *

♯𝑝](𝑡) + [𝑓 *
♯𝑞](𝑡)) = 𝑡 for all 𝑡 ∈ supp(𝑓 *

♯𝑝)∪ supp(𝑓 *
♯𝑞).

Recall that we work with a mini-batch setting, where {𝑥𝑝𝑖 }𝑚𝑖=1 and {𝑥𝑞𝑖}𝑚𝑖=1 are

sampled from 𝑝 and 𝑞 respectively, and 𝑔 is the adversarial log-loss discriminator.

We denote the corresponding 1D outputs from the log-loss discriminator by 𝑜𝑝 =

{𝑜𝑝𝑖 }𝑚𝑖=1 = {𝑔(𝑥𝑝𝑖)}𝑚𝑖=1 and 𝑜𝑞 (defined similarly).

Distribution alignment. We adapt (4.8) for {𝑜𝑝𝑖 }𝑚𝑖=1 and {𝑜𝑞𝑖}𝑚𝑖=1:

𝒟𝑊 (𝑜𝑝, 𝑜𝑞) = inf
𝛾∈Γ(𝑜𝑝,𝑜𝑞)

1

𝑚

𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝛾𝑖𝑗𝑑(𝑜𝑝𝑖 , 𝑜
𝑞
𝑗), (4.12)

112

where Γ(𝑜𝑝, 𝑜𝑞) is the set of 𝑚×𝑚 doubly stochastic matrices. Since 𝑜𝑝 and 𝑜𝑞 are

sets of 1D samples with the same size, it can be shown [199] that the optimal 𝛾*

corresponds to an assignment 𝜋*, which pairs points in the sorting order and can be

computed efficiently by sorting both sets 𝑜𝑝 and 𝑜𝑞. The transportation cost is zero if

and only if there exists an invertible 1-to-1 assignment 𝜋* such that 𝑜𝑝𝑖 = 𝑜𝑞𝜋*(𝑖). GAN

training algorithms proposed in [52, 53] utilize the above sorting procedure to estimate

the maximum sliced Wasserstein distance.

Relaxed distribution alignment. Similarly, we can adapt (4.9):

𝒟𝛽𝑊 (𝑜𝑝, 𝑜𝑞) = inf
𝛾∈Γ𝛽(𝑜𝑝,𝑜𝑞)

1

𝑚

𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝛾𝑖𝑗𝑑(𝑜𝑝𝑖 , 𝑜
𝑞
𝑗), (4.13)

where Γ𝛽(𝑜𝑝, 𝑜𝑞) is the set of 𝑚 × 𝑚 matrices with non-negative real entries, such

that
∑︀𝑚

𝑗=1 𝛾𝑖𝑗 = 1, ∀𝑖 and
∑︀𝑚

𝑖=1 𝛾𝑖𝑗 ≤ 1 + 𝛽, ∀𝑗. The optimization goal in (4.13)

is to find a “soft-assignment” 𝛾 which describes the transportation of probability

mass from points 𝑜𝑝𝑖 in 𝑜𝑝 to points 𝑜𝑞𝑖 in 𝑜𝑞. The parameter 𝛽 controls the set of

admissible assignments Γ𝛽, which is similar to its role discussed in Section 4.4.1: with

transportation assignment tolerance 𝛽, the total mass of points in 𝑜𝑝 transported

to each of the points 𝑜𝑞𝑖 cannot exceed 1 + 𝛽. We refer to such assignments as

(𝛽 + 1)-to-1 assignment. The transportation cost is zero if and only if there exists

such an assignment between 𝑜𝑝 and 𝑜𝑞.

It can be shown (see Appendix B.2) that for integer value of 𝛽, the set of minimizers

of (4.13) must contain a “hard-assignment” transportation plan, which assigns each

point 𝑜𝑝𝑖 to exactly one point 𝑜𝑞𝑗 . Then (1 +𝛽) gives the upper bound on the number of

points 𝑜𝑝𝑖 that can be transported to given point 𝑜𝑞𝑗 . This hard assignment problem can

be solved quasi-linearly with worst case time complexity 𝒪 ((𝛽 + 1)𝑚2) [28], which,

combined with Proposition 4.4.3, can lead to new algorithms for relaxed distribution

alignment besides those proposed in Wu et al. [262].

Support alignment. When 𝛽 = ∞, the sum
∑︀𝑚

𝑖=1 𝛾𝑖𝑗 is unconstrained for all

𝑗, and each point 𝑜𝑝𝑖 can be assigned to any of the points 𝑜𝑞𝑗 . The optimal solution

is simply 1-nearest neighbor assignment, or to follow the above terminology, ∞-to-1

113

assignment.

4.5 Related Work

Distribution alignment. Apart from the works, e.g. [3, 9, 52, 53, 72–74, 78, 87,

132, 145, 146, 155, 160, 191, 200, 220, 224, 238, 246, 255, 260, 277], that focus on

distribution alignment, there are methods [153, 154, 194, 234, 235] based on the

alignment of some characteristics of the distribution, such as first or second moments.

Our work is concerned with a different problem, support alignment, which is a novel

objective in this line of work. In terms of methodology, our use of the discriminator

output space to work with easier optimization in 1D is inspired by a line of work

[52, 53, 74, 220, 260] on sliced Wasserstein distance based models. Our result in

Proposition 4.4.3 also provides theoretical insight on the practical effectiveness of 1D

OT in [53].

Relaxed distribution alignment. In Section 4.4, we have already covered

in detail the connections between our work and [262]. Balaji et al. [10] introduced

relaxed distribution alignment with a different focus, aiming to be insensitive to

outliers. Chamfer distance/divergence (CD) is used to compute similarity between

images/3D point clouds [69, 180]. For text data, Kusner et al. [133] presented Relaxed

Word Mover’s Distance (RWMD) to prune candidates of similar documents. CD

and RWMD are essentially the same as the empirical version of SSD divergence (4.6)

with 𝑑(·, ·) being the Euclidean distance. All of these distances between empirical

measures are computed by finding the nearest neighbor assignments. Our subroutine

of calculating the support distance in the 1D discriminator output space is done

similarly by finding nearest neighbors within the current batch and history buffers.

Support estimation. There exists a series of work, e.g. [37, 51, 102, 126, 195,

215, 222, 241, 271], on novelty/anomaly detection problem, which can be casted as

support estimation. We consider a fundamentally different problem setting. Our goal

is to align the supports and our approach does not directly estimate the supports.

Instead, we implicitly learn the relationships between supports (density ratio to be

114

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5
−3

−2

−1

0

1

2

3

(a) No DA (avg acc: 63%)
𝒟𝑊 (𝑝𝜃𝑍 , 𝑞

𝜃
𝑍) = 0.78

𝒟△(𝑝𝜃𝑍 , 𝑞
𝜃
𝑍) = 0.10

−2 −1 0 1 2
−2

−1

0

1

2

(b) DANN (avg acc: 75%)
𝒟𝑊 (𝑝𝜃𝑍 , 𝑞

𝜃
𝑍) = 0.07

𝒟△(𝑝𝜃𝑍 , 𝑞
𝜃
𝑍) = 0.02

−1 0 1 2 3

−1

0

1

2

TargetSource

class ‘3’

class ‘5’

class ‘9’

class ‘3’

class ‘5’

class ‘9’

(c) ASA-abs (avg acc:
94%)

𝒟𝑊 (𝑝𝜃𝑍 , 𝑞
𝜃
𝑍) = 0.59

𝒟△(𝑝𝜃𝑍 , 𝑞
𝜃
𝑍) = 0.03

Figure 4-4: Visualization of learned 2D embeddings on 3-class USPS→MNIST with
label distribution shift. In source domain, all classes have equal probability 1

3
. The

target probabilities of classes ‘3’, ‘5’, ‘9’ are [23%, 65%, 12%]. Each panel shows
2 level sets (outer one approximates the support) of the kernel density estimates
of embeddings in source (filled regions) and target domains (solid/dashed lines).
We report the average class accuracy of the target domain, 𝒟𝑊 and 𝒟△ between
embeddings.

specific) via a discriminator.

4.6 Experiments

Problem setting. We evaluate our proposed ASA method in the setting of unsuper-

vised domain adaptation (UDA). The goal of UDA algorithms is to train and “adapt”

a classification model 𝑀 : 𝒳 → 𝒴 from source domain distribution 𝑝𝑋,𝑌 to target do-

main distribution 𝑞𝑋,𝑌 given the access to a labeled source dataset {𝑥𝑝𝑖 , 𝑦𝑝𝑖 }𝑁
𝑝

𝑖=1 ∼ 𝑝𝑋,𝑌

and an unlabeled target dataset {𝑥𝑞𝑖}𝑁
𝑞

𝑖=1 ∼ 𝑞𝑋 .

A common approach for UDA is to represent 𝑀 as 𝐶𝜑∘𝐹 𝜃: a classifier 𝐶𝜑 : 𝒵 → 𝒴
and a feature extractor 𝐹 𝜃 : 𝒳 → 𝒵, and train 𝐶𝜑 and 𝐹 𝜃 by minimizing: 1)

classification loss ℓcls on source examples; 2) alignment loss𝒟align measuring discrepancy

between 𝑝𝜃𝑍 = 𝐹 𝜃
♯𝑝𝑋 and 𝑞𝜃𝑍 = 𝐹 𝜃

♯𝑞𝑋 :

min
𝜑,𝜃

1

𝑁𝑝

𝑁𝑝∑︁
𝑖=1

ℓcls(𝐶
𝜑(𝐹 𝜃(𝑥𝑝𝑖)), 𝑦

𝑝
𝑖) + 𝜆 · 𝒟align

(︀
{𝐹 𝜃(𝑥𝑝𝑖)}𝑁

𝑝

𝑖=1, {𝐹 𝜃(𝑥𝑞𝑖)}𝑁
𝑞

𝑖=1

)︀
, (4.14)

In practice 𝒟align is an estimate of a divergence measure via an adversarial discriminator

115

𝑔𝜓. Choices of 𝒟align include f-divergences [73, 183] and Wasserstein distance [9]

to enforce distribution alignment and versions of re-weighted/relaxed distribution

divergences [238, 262] to enforce relaxed distribution alignment. For support alignment,

we apply the proposed ASA method as the alignment subroutine in (4.14) with log-loss

discriminator 𝑔𝜓 (4.5) and 𝒟align computed as (4.7).

Task specifications. We consider 3 UDA tasks: USPS→MNIST, STL→CIFAR,

and VisDA-2017, and 2 versions of ASA: ASA-sq, ASA-abs corresponding to squared

and absolute distances respectively for 𝑑(·, ·) in (4.7). We compare ASA with: No DA

(no domain adaptation), DANN [73] (distribution alignment with JS divergence),

VADA [225] (distribution alignment with virtual adversarial training), IWDAN,

IWCDAN [238] (relaxed distribution alignment via importance weighting) sDANN-

𝛽 [262] (relaxed/𝛽-admissible JS divergence via re-weighting). Further experiment

details are provided in Appendix B.3.

To evaluate the robustness of the methods, we simulate label distribution shift by

subsampling source and target dataset, so that source has balanced label distribution

and target label distribution follows the power law 𝑞𝑌 (𝑦) ∝ 𝜎(𝑦)−𝛼, where 𝜎 is a

random permutation of class labels {1, . . . , 𝐾} and 𝛼 controls the severity of the shift

(𝛼 = 0 means balanced label distribution). For each task, we generate 5 random

permutations 𝜎 for 4 different shift levels 𝛼 ∈ {0, 1, 1.5, 2}. Essentially we transform

each (source, target) dataset pair to 5× 4 = 20 tasks of different difficulty levels, since

classes are not equally difficult and different permutations can give them different

weights.

Evaluation metrics. We choose the average (per-)class accuracy and minimum

(per-)class accuracy on the target test set as evaluation metrics. Under the average

class accuracy metric, all classes are treated as equally important (despite the unequal

representation during training for 𝛼 > 0), and the minimum class accuracy focuses on

model’s worst within-class performance. In order to account for the variability of task

difficulties across random permutations of target labels, we report robust statistics,

median and a 25-75 percentile interval, across 5 runs.

Illustrative example. First we consider a simplified setting to intuitively under-

116

Table 4.1: Average and minimum class accuracy (%) on USPS→MNIST with different
levels of shifts in label distributions (higher 𝛼 implies more severe imbalance). We
report median (the main number), and 25 (subscript) and 75 (superscript) percentiles
across 5 runs.

𝛼 = 0.0 𝛼 = 1.0 𝛼 = 1.5 𝛼 = 2.0

Algorithm average min average min average min average min

No DA 71.9 72.9
70.4 20.3 22.9

17.6 72.9 74.7
72.0 25.8 31.8

18.3 71.3 72.5
71.2 27.5 37.3

24.2 71.3 73.0
70.6 16.6 26.8

10.8

DANN 97.8 97.8
97.6 96.0 96.1

95.8 83.5 84.6
76.7 25.1 36.9

08.4 70.0 71.2
63.9 01.1 01.5

01.0 57.8 60.4
52.0 00.9 01.6

00.5

VADA 98.0 98.0
97.9 96.2 96.3

95.9 88.2 89.9
88.1 48.9 50.0

47.8 78.2 83.1
70.7 06.6 23.5

02.4 61.9 65.4
56.3 01.4 01.5

00.8

IWDAN 97.5 97.5
97.4 95.7 95.9

95.7 95.7 95.8
92.6 81.3 82.3

67.1 86.5 87.8
80.2 15.2 55.0

04.2 74.4 78.6
70.0 07.3 22.4

06.3

IWCDAN 98.0 98.1
97.9 96.6 96.9

96.4 96.7 97.5
93.3 85.1 93.9

65.3 91.3 93.8
90.5 66.5 74.5

64.1 77.5 82.3
77.3 22.2 45.4

02.7

sDANN-4 87.4 95.7
87.2 05.6 90.0

05.6 94.9 94.9
94.7 85.7 87.7

84.4 86.8 89.1
85.5 21.6 50.3

15.4 81.5 83.1
81.3 39.3 56.2

37.9

ASA-sq 93.7 93.9
93.3 89.2 89.4

88.4 92.3 93.6
91.5 83.5 88.7

80.8 90.9 92.1
89.6 69.9 82.0

66.6 87.2 89.3
85.8 62.5 69.3

46.4

ASA-abs 94.1 94.5
93.8 88.9 91.2

87.0 92.8 93.2
89.3 78.9 82.9

65.1 92.5 92.9
90.9 82.4 85.4

74.5 90.4 90.7
89.2 68.4 73.0

67.5

stand and directly analyze the behavior of our proposed support alignment method in

domain adaptation under label distribution shift. We consider a 3-class USPS→MNIST

problem by selecting a subset of examples corresponding to digits ‘3’, ‘5’, and ‘9’,

and use a feature extractor network with 2D output space. We introduce label distri-

bution shift as described above with 𝛼 = 1.5, i.e. the probabilities of classes in the

target domain are 12%, 23%, and 65%. We compare No DA, DANN, ASA-abs by

their average target classification accuracy, Wasserstein distance 𝒟𝑊 (𝑝𝜃𝑍 , 𝑞
𝜃
𝑍) and SSD

divergence 𝒟△(𝑝𝜃𝑍 , 𝑞
𝜃
𝑍) between the learned embeddings of source and target domain.

We apply a global affine transformation to each embedding space in order to have

comparable distances between different spaces: we center the embeddings so that

their average is 0 and re-scale them so that their average norm is 1. The results are

shown in Figure 4-4 and Table 4.5. Compared to No DA, both DANN and ASA

achieve support alignment. DANN enforces distribution alignment, and thus places

some target embeddings into regions corresponding to the wrong class. In comparison,

ASA does not enforce distribution alignment and maintains good class correspondence

across the source and target embeddings.

Main results. The results of the main experimental evaluations are shown in

Tables 4.1, 4.2, 4.3. Without any alignment, source only training struggles relatively

117

Table 4.2: Results on STL→CIFAR. Same setup and reporting metrics as Table 4.1.

𝛼 = 0.0 𝛼 = 1.0 𝛼 = 1.5 𝛼 = 2.0

Algorithm average min average min average min average min

No DA 69.9 70.0
69.8 49.8 50.6

45.3 68.8 69.3
68.3 47.2 48.2

45.3 66.8 67.2
66.4 46.0 47.0

45.8 65.8 66.7
64.8 43.7 44.6

41.6

DANN 75.3 75.4
74.9 54.6 56.6

54.2 69.9 70.1
68.6 44.8 45.1

40.7 64.9 67.1
63.7 34.9 36.8

33.9 63.3 64.8
57.4 27.0 28.5

21.2

VADA 76.7 76.7
76.6 56.9 58.3

53.5 70.6 71.0
70.0 47.7 48.8

44.0 66.1 66.5
65.4 35.7 39.3

33.3 63.2 64.7
60.2 25.5 28.0

25.2

IWDAN 69.9 70.7
69.9 50.5 50.6

47.9 68.7 69.1
68.6 45.8 50.5

44.8 67.1 67.3
65.9 44.7 44.8

40.4 64.4 64.9
63.6 36.8 37.9

34.5

IWCDAN 70.1 70.2
70.1 47.8 49.3

42.4 69.4 69.4
69.1 47.1 51.3

46.3 66.1 67.2
65.0 39.9 40.8

37.7 64.5 65.1
63.9 37.0 40.2

35.5

sDANN-4 71.8 72.1
71.7 52.1 52.8

52.1 71.1 71.7
70.4 49.9 51.8

48.1 69.4 70.0
68.7 48.6 49.0

43.5 66.4 67.9
66.2 39.0 47.1

33.6

ASA-sq 71.7 71.9
71.7 52.9 53.4

46.7 70.7 71.0
70.4 51.6 52.7

46.8 69.2 69.3
69.2 45.6 52.0

43.3 68.1 68.2
67.2 44.7 45.9

39.8

ASA-abs 71.6 71.7
71.2 49.0 53.5

48.4 70.9 71.0
70.8 49.2 50.0

47.3 69.6 69.9
69.6 43.2 49.5

42.1 67.8 68.2
66.6 40.9 49.0

35.4

Table 4.3: Results on VisDA17. Same setup and reporting metrics as Table 4.1.

𝛼 = 0.0 𝛼 = 1.0 𝛼 = 1.5 𝛼 = 2.0

Algorithm average min average min average min average min

No DA 49.5 50.5
49.4 22.2 24.6

22.2 50.2 50.8
49.2 21.2 21.3

20.7 47.1 47.6
46.6 18.6 22.2

18.6 45.3 46.5
45.2 19.5 19.8

14.4

DANN 75.4 76.2
74.4 36.7 40.9

35.6 64.1 65.3
62.8 25.0 29.3

24.8 52.1 52.3
51.4 11.5 12.4

11.4 43.1 44.3
39.1 03.6 14.3

03.6

VADA 75.3 76.0
74.8 40.5 41.8

39.7 64.6 65.1
61.2 22.8 28.2

21.7 53.0 54.2
51.6 14.8 21.7

13.7 43.9 44.7
40.9 08.5 11.1

05.0

IWDAN 73.2 73.3
72.9 31.7 34.8

22.8 64.4 64.6
61.1 12.1 24.7

05.0 51.3 56.6
51.0 04.6 10.4

02.1 45.1 48.0
41.7 04.6 13.6

01.2

IWCDAN 71.6 75.2
70.6 27.6 28.0

22.8 60.6 61.0
60.2 01.1 11.3

00.7 49.7 51.9
45.6 02.2 05.7

00.2 38.3 46.2
37.3 00.6 01.7

00.3

sDANN-4 72.4 73.3
71.8 37.8 40.8

32.3 68.4 68.7
66.2 26.6 29.4

26.2 57.2 57.8
56.8 18.6 23.9

16.7 50.7 51.7
49.8 18.6 20.0

17.1

ASA-sq 64.9 65.0
63.7 35.7 35.8

32.1 61.8 63.2
60.6 31.4 34.4

20.4 57.8 58.3
55.5 26.7 32.1

17.3 51.9 52.0
50.8 18.3 21.2

16.9

ASA-abs 64.8 65.0
64.5 40.6 41.9

36.0 62.0 62.3
60.5 27.3 29.7

16.7 57.1 58.4
56.2 26.0 31.2

13.9 52.5 56.6
51.9 19.7 22.2

17.7

to adapt to the target domain. Nonetheless, its performance across the imbalance

levels remains robust, since the training procedure is the same. Agreeing with the

observation and theoretical results from previous work [143, 238, 239, 262, 278],

distribution alignment methods (DANN and VADA) perform well when there is no

shift but suffer otherwise, whereas relaxed distribution alignment methods (IWDAN,

IWCDAN and sDANN-𝛽) show more resilience to shifts. On all tasks with positive 𝛼,

we observe that it is common for the existing methods to achieve good class average

accuracies while suffering significantly on some individual classes. These results suggest

that the often-ignored but important min-accuracy metric can be very challenging.

Finally, our support alignment methods (ASA-sq and ASA-abs) are the most robust

ones against the shifts, while still being competitive in the more balanced settings

118

(𝛼 = 0 or 1). We achieve best results in the more imbalanced and difficult tasks

(𝛼 = 1.5 or 2) for almost all categories on all datasets. Please refer to Appendix B.3

for ablation studies and additional comparisons.

Effect of history size. To quantify the effects of mini-batch training mentioned

in Section 4.3, we explore different sizes of history buffers on USPS→MNIST task with

the label distribution shift 𝛼 = 1.5. The results are presented in Figure 4-5 and Table

4.4. Figure 4-6 shows the distributions of outputs of the learned discriminator at the

end of the training. While without any alignment objectives neither the densities nor

the supports of 𝑔𝜓♯𝑝𝜃𝑍 and 𝑔𝜓♯𝑞𝜃𝑍 are aligned, both alignment methods approximately

satisfy their respective alignment constraints. Compared with DANN results, ASA

with small history size performs similarly to distribution alignment, while all history

sizes are enough for support alignment. We also observe the correlation between

distribution distance and target accuracy: under label distribution shifts, the better

distribution alignment is achieved, the more target accuracy suffers. Note that with

too big history buffers (e.g. 𝑛 = 5000), we observe a sudden drop in performance

and increases in distances. We hypothesize that this could be caused by the fact

that the history buffer stores discriminator output values from the past steps while

the discriminator parameters constantly evolve during training. As a result, for a

large history buffer, the older items might no longer accurately represent the current

pushforward distribution as they become outdated.

0 100 500 1000 2000 5000
ASA history size

0

20

40

60

80

M
in

im
u

m
cl

as
s

ac
cu

ra
cy

(%
)

ASA DANN No DA

0 100 500 1000 2000 5000
ASA history size

10−1

100

101

102

D
is

tr
ib

u
ti

on
d

is
ta

n
ce

0 100 500 1000 2000 5000
ASA history size

10−2
5 · 10−2

10−1

100

101

102

S
u

p
p

or
t

d
is

ta
n

ce

Figure 4-5: Evaluation of history size effect for ASA on MNIST→USPS with the label
distribution shift (𝛼 = 1.5). The panels show (left to right): minimum class accuracy
on target test set; Wasserstein distance 𝒟𝑊 (𝑔𝜓♯𝑝

𝜃
𝑍 , 𝑔

𝜓
♯𝑞
𝜃
𝑍) between the pushforward

distributions of source and target representations induced by the discriminator; SSD
divergence 𝒟△(𝑔𝜓♯𝑝

𝜃
𝑍 , 𝑔

𝜓
♯𝑞
𝜃
𝑍) between the pushforward distributions. In each panel

the dashed lines show the respective quantities for “No DA” and DANN methods.

119

Direct evaluation of support distance. In order to directly evaluate the ability

of ASA (with history buffers) to enforce support alignment, we consider the setting of

the illustrative experiment shown in Figure 4-4 (3-class USPS→MNIST adaptation

with 2D feature extractor, 𝛼 = 1.5). We compare methods No DA, DANN, and ASA-

abs (with different history buffer sizes). For each method we consider the embedding

space of the learned feature extractor at the end of training and compute Wasserstein

distance 𝒟𝑊 (𝑝𝜃𝑍 , 𝑞
𝜃
𝑍) and SSD divergence 𝒟△(𝑝𝜃𝑍 , 𝑞

𝜃
𝑍) between the embeddings of source

and target domain (note that we compute the distances in the original embedding

space directly without projecting data to 1D with the discriminator). To ensure

meaningful comparison of the distances between different embedding spaces, we apply

a global affine transformation for each embedding space: we center the embeddings

so that their average is 0 and re-scale them so that their average norm is 1. The

results of this evaluation are shown in Table 4.5. We observe that, compared to no

alignment and distribution alignment (DANN) methods, ASA aligns the supports

without necessarily aligning the distributions (in this imbalanced setting, distribution

alignment implies low adaptation accuracy).

Table 4.4: Analysis of effect history size parameter for ASA on USPS→MNIST with
class label distribution shift corresponding to 𝛼 = 1.5. We report distribution and
support distances between the pushforward distributions 𝑔𝜓♯𝑝𝜃𝑍 and 𝑔𝜓♯𝑞𝜃𝑍 , as well as
the value of discriminator’s log-loss.

Target accuracy (%) Distribution distances

Method History size average min 𝒟𝑊 (𝑔𝜓♯𝑝
𝜃
𝑍 , 𝑔

𝜓
♯𝑞
𝜃
𝑍) 𝒟△(𝑔𝜓♯𝑝

𝜃
𝑍 , 𝑔

𝜓
♯𝑞
𝜃
𝑍) Log-loss

No DA — 71.28 72.51
71.25 27.46 37.26

24.21 307.56 322.00
277.33 40.35 46.06

32.10 00.05 00.07
00.04

DANN — 69.96 71.25
63.89 01.11 01.53

00.99 00.11 00.11
00.10 00.00 00.00

00.00 00.65 00.65
00.65

ASA-abs 0 62.75 64.35
61.78 19.36 23.63

17.90 01.07 01.15
00.99 00.01 00.01

00.00 00.57 00.58
00.56

ASA-abs 100 80.58 81.73
78.22 35.09 44.37

32.10 02.64 02.70
02.15 00.00 00.00

00.00 00.53 00.53
00.52

ASA-abs 500 92.02 92.76
90.56 76.96 83.72

70.94 06.21 06.48
05.69 00.00 00.01

00.00 00.45 00.45
00.45

ASA-abs 1000 92.54 92.93
90.90 82.41 85.43

74.53 08.06 08.19
07.97 00.01 00.02

00.01 00.41 00.41
00.40

ASA-abs 5000 86.03 87.50
84.86 62.19 71.62

46.98 29.23 29.63
24.54 00.05 00.08

00.05 00.29 00.30
00.29

Effect of conditional entropy loss. In order to quantify the improvements of the

support alignment objective and the conditional entropy objective in separation, we

conduct an ablation study. We evaluate all domain adaptation methods (except VADA

120

−30−20−10 0 10 20 30
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14 g]p (source)

g]q (target)

(a) No DA

−4 −2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

(b) DANN

−6 −4 −2 0 2 4 6
0.0

0.1

0.2

0.3

0.4

0.5

(c) ASA (𝑛 = 0)

−8 −6 −4 −2 0 2 4 6 8
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(d) ASA (𝑛 = 1000)

Figure 4-6: Kernel density estimates (in the discriminator output space) of 𝑔𝜓♯𝑝𝜃𝑍 ,
𝑔𝜓♯𝑞

𝜃
𝑍 at the end of the training on USPS→MNIST task with 𝛼 = 1.5. 𝑛 is the size of

ASA history buffers.

Table 4.5: Results of No DA, DANN, and ASA-abs (with different history sizes) on
3-class USPS→MNIST adaptation with 2D feature extractor and label distribution
shift corresponding to 𝛼 = 1.5. We report average and minimum target class accuracy,
as well as Wasserstein distance 𝒟𝑊 and support divergence 𝒟△ between source 𝑝𝜃𝑍
and target 𝑞𝜃𝑍 2D embedding distributions. We report median (the main number),
and 25 (subscript) and 75 (superscript) percentiles across 5 runs.

Algorithm History size Accuracy (avg) Accuracy (min) 𝒟𝑊 (𝑝𝜃𝑍 , 𝑞
𝜃
𝑍) 𝒟△(𝑝𝜃𝑍 , 𝑞

𝜃
𝑍)

No DA — 63.0 69.6
62.3 45.3 53.6

37.9 0.78 00.84
00.75 0.10 0.10

0.10

DANN — 75.6 83.7
72.4 54.8 55.1

49.6 0.07 0.08
0.06 0.02 0.02

0.02

ASA-abs 0 73.9 84.1
73.4 61.8 72.4

54.6 0.23 0.47
0.22 0.03 0.03

0.03

ASA-abs 100 88.5 95.1
86.8 71.4 93.3

70.6 0.54 0.36
0.56 0.03 0.03

0.03

ASA-abs 500 94.5 94.7
88.7 89.0 90.3

83.1 0.59 0.64
0.55 0.03 0.03

0.03

ASA-abs 1000 91.1 93.0
91.1 85.6 86.2

80.7 0.59 0.62
0.55 0.03 0.03

0.03

ASA-abs 2000 94.0 94.7
91.2 88.6 89.4

80.2 0.62 0.66
0.58 0.03 0.03

0.03

ASA-abs 5000 82.1 83.9
81.8 68.9 70.9

65.5 0.64 0.67
0.63 0.04 0.04

0.04

which uses the conditional entropy in the original implementation) on STL→CIFAR

task without the conditional entropy loss (𝜆ent = 0). The results of the ablation study

are presented in Table 4.6. We observe that the effect of the auxiliary conditional

entropy is essentially the same for all methods across all imbalance levels: with

𝜆ent = 0.1 the accuracy either improves (especially the average class accuracy) or

roughly stays on the same level. The relative ranking of distribution alignment, relaxed

distribution alignment, and support alignment methods is the same with both 𝜆ent = 0

and 𝜆ent = 0.1. The results demonstrate that the benefits of support alignment

approach and conditional entropy are orthogonal.

Effect of alignment weight. We provide additional experimental results compar-

121

Table 4.6: Results of ablation experiments of the effect of auxiliary conditional entropy
loss on STL→CIFAR data. Same setup and reporting metrics as Table 4.1.

𝛼 = 0.0 𝛼 = 1.0 𝛼 = 1.5 𝛼 = 2.0

Algorithm 𝜆ent average min average min average min average min

DANN 0.0 74.6 75.1
74.1 51.5 55.0

49.9 68.4 69.2
67.0 43.2 43.7

41.2 65.7 65.9
62.8 35.5 36.2

29.6 62.5 64.6
60.0 27.5 27.5

25.7

DANN 0.1 75.3 75.4
74.9 54.6 56.6

54.2 69.9 70.1
68.6 44.8 45.1

40.7 64.9 67.1
63.7 34.9 36.8

33.9 63.3 64.8
57.4 27.0 28.5

21.2

IWDAN 0.0 70.4 70.7
70.2 47.2 48.0

46.8 68.6 68.8
68.4 43.6 46.3

43.2 66.7 67.9
66.0 44.7 46.2

43.3 63.9 66.1
62.9 36.5 37.3

32.7

IWDAN 0.1 69.9 70.7
69.9 50.5 50.6

47.9 68.7 69.1
68.6 45.8 50.5

44.8 67.1 67.3
65.9 44.7 44.8

40.4 64.4 64.9
63.6 36.8 37.9

34.5

IWCDAN 0.0 70.1 70.8
70.0 50.5 50.8

49.1 68.6 69.4
68.2 44.2 45.8

41.2 66.0 66.0
65.9 45.0 47.8

43.7 63.8 64.1
62.3 37.3 37.7

33.6

IWCDAN 0.1 70.1 70.2
70.1 47.8 49.3

42.4 69.4 69.4
69.1 47.1 51.3

46.3 66.1 67.2
65.0 39.9 40.8

37.7 64.5 65.1
63.9 37.0 40.2

35.5

sDANN-4 0.0 69.4 70.0
68.8 46.5 49.7

45.1 69.6 69.7
69.3 49.1 49.2

47.4 68.0 68.6
67.8 48.2 48.8

42.6 66.3 66.4
64.2 40.7 42.9

36.6

sDANN-4 0.1 71.8 72.1
71.7 52.1 52.8

52.1 71.1 71.7
70.4 49.9 51.8

48.1 69.4 70.0
68.7 48.6 49.0

43.5 66.4 67.9
66.2 39.0 47.1

33.6

ASA-sq 0.0 69.9 70.3
69.9 48.0 50.1

46.6 68.8 68.9
68.6 47.3 49.3

45.3 68.1 68.7
67.2 45.4 47.8

45.2 65.7 66.4
65.6 43.6 45.0

41.3

ASA-sq 0.1 71.7 71.9
71.7 52.9 53.4

46.7 70.7 71.0
70.4 51.6 52.7

46.8 69.2 69.3
69.2 45.6 52.0

43.3 68.1 68.2
67.2 44.7 45.9

39.8

ASA-abs 0.0 69.8 70.0
68.9 45.7 48.0

45.4 68.4 68.6
68.4 44.3 46.8

44.0 67.9 68.1
67.0 46.6 48.4

40.4 66.3 66.9
65.7 41.6 44.9

40.3

ASA-abs 0.1 71.6 71.7
71.2 49.0 53.5

48.4 70.9 71.0
70.8 49.2 50.0

47.3 69.6 69.9
69.6 43.2 49.5

42.1 67.8 68.2
66.6 40.9 49.0

35.4

ing ASA with DANN and VADA across different values of the alignment loss weight

𝜆align on STL→CIFAR task. The results are shown in Table 4.7. DANN with a higher

alignment weight 𝜆align = 1.0 performs better in the balanced (𝛼 = 0) setting and

worse in the imbalanced (𝛼 > 0) setting compared to a lower weight 𝜆align = 0.1, as

the distribution alignment constraint is enforced stricter. VADA optimizes a com-

bination of distribution alignment + VAT (virtual adversarial training) objectives

[225], and we observe the same trend: with lower alignment weight 𝜆align = 0.01,

VADA performs worse in the balanced setting and better in the imbalanced setting

compared to a higher weight 𝜆align = 0.1. Weight 𝜆align = 0.1 is a middle ground

between having poor performance in the imbalanced setting (𝜆align = 1.0) and not

sufficiently enforcing distribution alignment (𝜆align = 0.01). The role of VAT (similarly

to that of conditional entropy loss) is orthogonal to alignment objectives. Thus, we

provide additional evaluations of combining support alignment and VAT (the “ASA-sq

+ VAT” entry in Table 4.7) with alignment weight 𝜆align = 1.0. The good performance

of such combination shows that:

• One could improve our ASA’s performance by using auxiliary objectives.

• Support alignment-based method performs qualitatively differently from the

122

distribution alignment-based method since the performance holds with stricter

support alignment, while distribution alignment needs to loosen the constraints

considerably to reduce the performance degradation in the imbalanced setting.

Table 4.7: Results of comparison of ASA with DANN and VADA across different
values of the alignment loss weight 𝜆align on STL→CIFAR data. Same setup and
reporting metrics as Table 4.1.

𝛼 = 0.0 𝛼 = 1.0 𝛼 = 1.5 𝛼 = 2.0

Algorithm 𝜆align average min average min average min average min

DANN 0.01 72.3 72.7
72.2 49.5 50.8

48.8 70.6 71.2
69.7 48.9 51.2

41.5 68.5 68.7
67.2 46.1 50.0

36.2 65.9 66.0
64.1 36.7 39.4

29.9

DANN 0.1 75.3 75.4
74.9 54.6 56.6

54.2 69.9 70.1
68.6 44.8 45.1

40.7 64.9 67.1
63.7 34.9 36.8

33.9 63.3 64.8
57.4 27.0 28.5

21.2

DANN 1.0 77.2 77.3
76.8 58.5 59.4

56.7 66.3 66.8
64.5 37.9 41.6

37.5 62.8 63.3
56.1 27.5 28.9

24.6 58.7 59.7
52.3 18.5 20.5

17.2

VADA 0.01 74.4 74.4
74.2 54.2 55.4

52.6 71.7 71.7
71.7 51.6 52.0

45.0 69.5 69.7
68.4 47.5 49.8

40.0 65.9 66.1
64.8 37.2 39.4

35.3

VADA 0.1 76.7 76.7
76.6 56.9 58.3

53.5 70.6 71.0
70.0 47.7 48.8

44.0 66.1 66.5
65.4 35.7 39.3

33.3 63.2 64.7
60.2 25.5 28.0

25.2

ASA-sq 0.1 71.7 71.9
71.7 52.9 53.4

46.7 70.7 71.0
70.4 51.6 52.7

46.8 69.2 69.3
69.2 45.6 52.0

43.3 68.1 68.2
67.2 44.7 45.9

39.8

ASA-sq + VAT 1.0 74.2 74.5
74.0 52.2 52.5

51.9 72.2 72.2
71.9 53.5 53.6

45.4 70.6 70.8
70.4 48.9 52.3

45.6 67.4 67.7
66.8 43.0 46.0

39.4

Comparison with optimal transport baselines. We provide additional exper-

imental results comparing our method with OT-based methods for domain adaptation.

We implement two OT-based methods which we describe below.

• The first method is a variant of the max-sliced Wasserstein distance (which was

proposed for GAN training by Deshpande et al. [53]) for domain adaptation. In

the table below we refer to this method as DANN-OT. In our implementation

DANN-OT minimizes the Wasserstein distance between the pushforward dis-

tributions 𝑔*♯ 𝑝, 𝑔*♯ 𝑞 induced by the optimal log-loss discriminator 𝑔* (4.5). As

discussed in Section 4.4.2 (paragraph “Distribution alignment”) the computa-

tion of the Wasserstein distance between 1D distributions can be implemented

efficiently via sorting.

• The second method is an OT-based variant of DANN which uses a dual Wasser-

stein discriminator instead of the log-loss discriminator. In the table below

we refer to this method as DANN-WGP. This method minimizes the Wasser-

stein distance in its dual Kantorovich form. We train the discriminator with

123

the Wasserstein dual objective and a gradient penalty proposed to enforce

Lipshitz-norm constraint [87].

We present the evaluation results of the OT-based methods on STL→CIFAR

domain adaptation task in the Table 4.8. Note that the OT-based methods aim to

enforce distribution alignment constraints. We observe that the OT-based methods

follow the same trend as DANN: they deliver improved accuracy compared to No DA

in the balanced setting, but suffer in the imbalanced settings (𝛼 > 0) due to their

distribution alignment nature.

Table 4.8: Results of comparison with optimal transport based methods on
STL→CIFAR data. Same setup and reporting metrics as Table 4.1.

𝛼 = 0.0 𝛼 = 1.0 𝛼 = 1.5 𝛼 = 2.0

Algorithm average min average min average min average min

No DA 69.9 70.0
69.8 49.8 50.6

45.3 68.8 69.3
68.3 47.2 48.2

45.3 66.8 67.2
66.4 46.0 47.0

45.8 65.8 66.7
64.8 43.7 44.6

41.6

DANN 75.3 75.4
74.9 54.6 56.6

54.2 69.9 70.1
68.6 44.8 45.1

40.7 64.9 67.1
63.7 34.9 36.8

33.9 63.3 64.8
57.4 27.0 28.5

21.2

DANN-OT 76.0 76.0
75.8 55.2 55.5

54.3 67.7 68.9
67.1 43.0 43.7

36.5 64.5 65.1
60.9 34.4 34.6

29.3 61.3 62.0
54.4 24.3 25.5

23.2

DANN-WGP 74.8 75.1
74.7 53.5 54.4

53.3 67.7 67.9
65.3 38.6 41.0

34.4 63.3 63.4
57.1 27.0 32.4

26.3 59.0 61.8
54.3 21.9 22.5

18.6

sDANN-4 71.8 72.1
71.7 52.1 52.8

52.1 71.1 71.7
70.4 49.9 51.8

48.1 69.4 70.0
68.7 48.6 49.0

43.5 66.4 67.9
66.2 39.0 47.1

33.6

ASA-sq 71.7 71.9
71.7 52.9 53.4

46.7 70.7 71.0
70.4 51.6 52.7

46.8 69.2 69.3
69.2 45.6 52.0

43.3 68.1 68.2
67.2 44.7 45.9

39.8

ASA-abs 71.6 71.7
71.2 49.0 53.5

48.4 70.9 71.0
70.8 49.2 50.0

47.3 69.6 69.9
69.6 43.2 49.5

42.1 67.8 68.2
66.6 40.9 49.0

35.4

Wu et al. [262] propose method WDANN-𝛽 which minimizes the dual form of the

asymmetrically-relaxed Wasserstein distance. However, they observe that sDANN-

𝛽 outperforms WDANN-𝛽 in experiments. Hence, we use sDANN-𝛽 as a relaxed

distribution alignment baseline in our experiments.

124

Chapter 5

Compositional Sculpting of Iterative

Generative Processes

5.1 Introduction

Large-scale general-purpose pre-training of machine learning models has produced

impressive results in computer vision [40, 124, 203], image generation [99, 205, 212],

natural language processing [33, 43, 54, 184, 211], robotics [2, 32, 59] and basic

sciences [115]. By distilling vast amounts of data, such models can produce powerful

inferences that lead to emergent capabilities beyond the specified training objective [27].

However, generic pre-trained models are often insufficient for specialized tasks in

engineering and basic sciences. Field-adaptation via techniques such as explicit

fine-tuning on bespoke datasets [274], human feedback [186], or cleverly designed

prompts [236, 258] is therefore often required. An alternative approach is to compose

the desired distribution using multiple simpler component models.

Compositional generation [11, 49, 62–64, 96, 103, 142, 149, 150, 162, 251, 275]

views a complex target distribution in terms of simpler pre-trained building blocks

which it can learn to mix and match into a tailored solution to a specialized task.

Besides providing a way to combine and reuse previously trained models, composition

is a powerful modeling approach. A composite model fuses knowledge from multiple

sources: base models trained for different tasks, enabling increased capacity beyond

125

that of any of the base models in isolation. If each individual base model captures

a certain property of the data, composing such models provides a way to specify

distributions over examples that exhibit multiple properties simultaneously [97]. The

need to construct complex distributions adhering to multiple constraints arises in

numerous practical multi-objective design problems such as multi-objective molecule

generation [108, 111, 264]. In the context of multi-objective generation, compositional

modeling provides mechanisms for adjustment and control of the resulting distribution,

which enables exploration of different trade-offs between the objectives and constraints.

Prior work on generative model composition [62, 96, 97] has developed oper-

ations for piecing together Energy-Based Models (EBMs) via algebraic manipula-

tions of their energy functions. For example, consider two distributions 𝑝1(𝑥) ∝

exp{−𝐸1(𝑥)} and 𝑝2(𝑥) ∝ exp{−𝐸2(𝑥)} induced by energy functions 𝐸1 and

𝐸2. Their product 𝑝prod(𝑥) ∝ 𝑝1(𝑥)𝑝2(𝑥) ∝ exp
(︀
−
(︀
𝐸1(𝑥) + 𝐸2(𝑥)

)︀)︀
and negation

𝑝neg(𝑥) ∝ 𝑝1(𝑥)/(𝑝2(𝑥))𝛾 ∝ exp
(︀
−
(︀
𝐸1(𝑥)− 𝛾𝐸2(𝑥)

)︀)︀
correspond to operations on the

underlying energy functions.

Iterative generative processes including diffusion models [99, 226, 229, 231] and

GFlowNets [16, 19] progressively refine coarse objects into cleaner ones over multiple

steps. The realization of effective compositions of these models is complicated by

the fact that simple alterations in their generation processes result in non-trivial

changes in the distributions of the final objects. For instance, the aforementioned

product and negation between EBMs cannot be realized simply by means of adding

or subtracting associated score-functions. Prior work addresses these challenges by

connecting diffusion models with EBMs through annealed Markov-Chain Monte-

Carlo (MCMC) inference. However, Metropolis-Hastings corrections are required to

ensure that the annealing process reproduces the desired distribution [64].

Jain et al. [108] develop Multi-Objective GFlowNets (MOGFNs), an extension of

GFlowNets for multi-objective optimization tasks. The goal of a vanilla GFlowNet

model is to capture the distribution induced by a single reward (objective) function

𝑝𝜃(𝑥) ∝ 𝑅(𝑥) (see Section 5.2.1 for details of GFlowNet formulation). A Multi-

Objective GFlowNet aims to learn a single conditional model that can realize dis-

126

tributions corresponding to various combinations (e.g. a convex combination) of

multiple reward functions. While a single MOGFN effectively realizes a spectrum

of compositions of base reward functions, the approach assumes access to the base

rewards at training time. Moreover, MOFGNs require the set of possible composition

operations to be specified at generative model training time. In this work, we address

post hoc composition of pre-trained GFlowNets (or diffusion models) and provide a

way to create compositions that need not be specified in advance.

In this work, we introduce Compositional Sculpting, a general approach for the

composition of pre-trained models. We highlight two special examples of binary opera-

tions — harmonic mean: (𝑝1⊗ 𝑝2) and contrast : (𝑝1◑ 𝑝2). More general compositions

are obtained as conditional distributions in a probabilistic model constructed on top of

pre-trained base models. We show that these operations can be realized via classifier

guidance. We provide results of empirical verification of our method on molecular

generation (with GFlowNets) and image generation (with diffusion models).

5.2 Background

5.2.1 Generative Flow Networks (GFlowNets)

GFlowNets [16, 19] are an approach for generating compositional objects (e.g. graphs).

The objective of GFlowNet training is specified by a “reward function” 𝑅(𝑥) ≥ 0

defined on the set of objects 𝒳 . The objective is to learn a generative model 𝑝(𝑥) that

assigns more probability mass on high-reward objects. Formally, GFlowNets seek to

produce the distribution 𝑝(𝑥) = 𝑅(𝑥)/𝑍, where 𝑍 =
∑︀

𝑥𝑅(𝑥).

Generative process. The generation of a complete object 𝑥 is realized through

a sequence of incremental changes of incomplete states 𝑠0 → 𝑠1 → . . . → 𝑠𝑛−1 → 𝑥

starting at the designated initial state 𝑠0. Formally, the structure of possible generation

trajectories 𝜏 = (𝑠0 → 𝑠1 → . . .→ 𝑠𝑛−1 → 𝑥) is captured by a DAG (𝒮,𝒜) where 𝒮
is the set of states (both complete and incomplete) and 𝒜 is the set of directed edges

(actions) 𝑠→ 𝑠′. The set 𝒮 has a designated initial state 𝑠0 and the set of complete

127

(a) 𝑝1 (b) 𝑝2

(c) 𝑝1 ⊗ 𝑝2 (d) 𝑝1◑ 𝑝2 (e) 𝑝1◐ 𝑝2

H
ig
h

Lo
w

Figure 5-1: Composition operations. (a,b) base distributions 𝑝1 and 𝑝2. (c)
harmonic mean of 𝑝1 and 𝑝2. (d) contrast of 𝑝1 with 𝑝2 (e) the reverse contrast
𝑝1◐ 𝑝2. Note ◑ is asymmetric. Grey lines show contours of PDF level sets of base
Gaussian distributions 𝑝1, 𝑝2. Black lines show contours of PDF levels sets of composite
distributions.

objects (terminal states) 𝒳 is a subset of 𝒮. Each generation trajectory 𝜏 starts at

the initial state 𝑠0, follows the edges (𝑠→ 𝑠′) ∈ 𝒜 of the DAG, and terminates at one

of the terminal states 𝑥 ∈ 𝒳 . We use |𝜏 | to denote the length of the trajectory (the

number of transitions).

This sequential generation process is controlled by a parameterized stochastic

“forward policy” 𝑃𝐹 (𝑠′|𝑠; 𝜃) which for each state 𝑠 ∈ 𝒮 ∖ 𝒳 specifies a probability

distribution over all possible successor states 𝑠′ : (𝑠 → 𝑠′) ∈ 𝒜. Generation is

performed by starting at 𝑠0 and sequentially sampling transitions from the forward

policy 𝑃𝐹 (·|·) until a terminal state is reached.

128

5.2.2 Diffusion Models

Diffusion models [99, 226, 228, 229, 231] are a family of generative models developed

for continuous domains. Given a dataset of samples {�̂�𝑖}𝑛𝑖=1 forming the empirical

distribution �̂�(𝑥) = 1
𝑛

∑︀
𝑖 𝛿�̂�𝑖(𝑥) in 𝒳 = R𝑑, diffusion models seek to approximate �̂�(𝑥)

via a generative process 𝑝(𝑥), which can then be used to generate new samples.

Stochastic Differential Equation (SDE) perspective. We discuss diffusion

models from the perspective of stochastic differential equations (SDE) [231]. A diffusion

process is a noising process that gradually destroys the original “clean” data 𝑥. It

can be specified as a time-indexed collection of random variables {𝑥𝑡}𝑇𝑡=0 in 𝒳 = R𝑑.

We use 𝑝𝑡(·) to denote the density of the distribution of 𝑥𝑡. The process interpolates

between the data distribution 𝑝0(𝑥) = �̂�(𝑥) at 𝑡 = 0, and the prior distribution 𝑝𝑇 (𝑥)

at 𝑡 = 𝑇 , which is typically constructed to have a closed form (e.g. standard normal)

to enable a simple sampling scheme. The evolution of 𝑥𝑡 is described by the “forward

SDE” 𝑑𝑥𝑡 = 𝑓𝑡(𝑥𝑡) 𝑑𝑡+ 𝑔𝑡 𝑑𝑤𝑡, where 𝑤𝑡 is the standard Wiener process, the function

𝑓𝑡 : R𝑑 → R𝑑 is called the drift coefficient and 𝑔𝑡 ∈ R is called the diffusion coefficient.

Specific choices of 𝑓𝑡 and 𝑔𝑡 completely determine the process and give rise to the

transition kernel 𝑝𝑠𝑡(𝑥𝑡|𝑥𝑠) for 0 ≤ 𝑠 < 𝑡 ≤ 𝑇 (see [231] for examples).

Generative process. Song et al. [231] invoke a result from the theory of stochastic

processes [7] which gives the expression for the reverse-time process or “backward

SDE”:

𝑑𝑥𝑡 =
[︀
𝑓𝑡(𝑥𝑡)− 𝑔2𝑡∇𝑥 log 𝑝𝑡(𝑥𝑡)

]︀
𝑑𝑡+ 𝑔𝑡 𝑑𝑤𝑡, (5.1)

where 𝑤𝑡 is the standard Wiener process in reversed time.

The backward SDE includes the known coefficients 𝑓𝑡, 𝑔𝑡, and the unknown score

function ∇𝑥 log 𝑝𝑡(·) of the marginal distribution 𝑝𝑡(·) at time 𝑡. This score function

is estimated by a deep neural network 𝑠𝑡(𝑥; 𝜃) ≈ ∇𝑥 log 𝑝𝑡(𝑥) (called “score-network”)

with parameters 𝜃. Once the score-network 𝑠𝑡(·; 𝜃) is trained, samples can be generated

via numerical integration of (5.1).

129

5.2.3 Classifier Guidance in Diffusion Models

Classifier guidance [55, 226] is a technique for controllable generation in diffusion

models. Suppose that each example 𝑥0 is accompanied by a discrete class label 𝑦.

The goal is to sample from the conditional distribution 𝑝0(𝑥0|𝑦). The Bayes rule

𝑝𝑡(𝑥𝑡|𝑦) ∝ 𝑝𝑡(𝑥𝑡)𝑝𝑡(𝑦|𝑥𝑡) implies the score-function decomposition ∇𝑥𝑡 log 𝑝𝑡(𝑥𝑡|𝑦) =

∇𝑥𝑡 log 𝑝𝑡(𝑥𝑡) + ∇𝑥𝑡 log 𝑝𝑡(𝑦|𝑥𝑡), where the first term is already approximated by a

pre-trained unconditional diffusion model and the second term can be derived from a

time-dependent classifier 𝑝𝑡(𝑦|𝑥𝑡). Therefore, the stated goal can be achieved by first

training the classifier 𝑝𝑡(𝑦|𝑥𝑡) using noisy samples 𝑥𝑡 from the intermediate steps of

the process, and then plugging in the expression for the conditional score into the

sampling process (5.1).

5.2.4 “Energy” Operations

Prior work introduced energy operations, “product” and “negation”, for energy-based

[62, 96] and diffusion [64] models. Given a pair of distributions 𝑝1(𝑥) ∝ exp{−𝐸1(𝑥)},
𝑝2(𝑥) ∝ exp{−𝐸2(𝑥)} corresponding to the respective energy functions 𝐸1 and 𝐸2,

the “product” and “negation” operations are defined as

(𝑝1 prod 𝑝2)(𝑥) ∝ exp
{︁
−
(︁
𝐸1(𝑥) + 𝐸2(𝑥)

)︁}︁
∝ 𝑝1(𝑥)𝑝2(𝑥), (5.2)

(𝑝1 neg𝛾 𝑝2)(𝑥) ∝ exp
{︁
−
(︁
𝐸1(𝑥)− 𝛾𝐸2(𝑥)

)︁}︁
∝

𝑝1(𝑥)(︀
𝑝2(𝑥)

)︀𝛾 . (5.3)

The product distribution (𝑝1 prod 𝑝2)(𝑥): (a) assigns relatively high likelihoods to

points 𝑥 that have sufficiently high likelihoods under both base distributions at the

same time; (b) assigns relatively low likelihoods to points 𝑥 that have close-to-zero

likelihood under one (or both) 𝑝1, 𝑝2. The negation distribution (𝑝1 neg𝛾 𝑝2)(𝑥) (a)

assigns relatively high likelihood to points 𝑥 that are likely under 𝑝1 but unlikely under

𝑝2; (b) assigns relatively low likelihood to points 𝑥 that have low likelihood under 𝑝1

and high likelihood under 𝑝2. The parameter 𝛾 > 0 controls the strength of negation.

Informally, the product concentrates on points that are common in both 𝑝1 and 𝑝2,

130

and the negation concentrates on points that are common in 𝑝1 and uncommon in 𝑝2.

If 𝑝1 and 𝑝2 capture objects demonstrating two distinct concepts (e.g. 𝑝1: images of

circles; 𝑝2 images of green shapes), it is fair to say (again, informally) that the product

and the negation resemble the logical operations of concept-intersection (“circle” AND

“green”) and concept-negation (“circle” AND NOT “green”) respectively.

The “product” and “negation” can be realized in a natural way in energy-based

models through simple algebraic operations on energy functions. However, real-

izing these operations on diffusion models is not as straightforward. The reason

is that sampling in diffusion models requires the coordination of multiple steps of

the denoising process. The simple addition of the time-dependent score functions

does not result in a score function that represents the diffused product distribution:

formally, ∇𝑥𝑡 log
(︀∫︀

𝑝0𝑡(𝑥𝑡|𝑥0)𝑝1(𝑥0)𝑝2(𝑥0) 𝑑𝑥0
)︀
̸= ∇𝑥𝑡 log

(︀∫︀
𝑝0𝑡(𝑥𝑡|𝑥0)𝑝1(𝑥0) 𝑑𝑥0

)︀
+

∇𝑥𝑡 log
(︀∫︀

𝑝0𝑡(𝑥𝑡|𝑥0)𝑝2(𝑥0) 𝑑𝑥0
)︀
; we refer the reader to [64] for more details on the

issue. Du et al. [64] develop a method that corrects the sum-of-scores sampling via

additional MCMC iterations nested under each diffusion timestep.

5.3 Related Work

Controllable generation. Generative model composition is a form of post-training

control of generative processes, an established area of research in generative model-

ing. A simple approach to control is conditional generation, which can be achieved

by training a conditional generative model 𝑝𝜃(𝑥|𝑐) on pairs (𝑥, 𝑐) of objects 𝑥 and

conditioning information 𝑐. Types of conditioning information can include class labels

[55] or more structured data such as text prompts [205, 212, 219], semantic maps, and

other images for image-to-image translation [212]. This approach assumes that the

generation control operations are specified at training time and the training data is

annotated with conditioning attributes. Classifier guidance [226] provides a way to

generate samples from conditional distributions that need not be specified at training

time. The guidance is realized by a classifier that is trained on examples 𝑥𝑡 (both

clean and noisy) accompanied by conditioning labels 𝑐. Dhariwal and Nichol [55] apply

131

classifier guidance on top of unconditional or conditional diffusion models to improve

the fidelity of generated images. Ho and Salimans [98] develop classifier-free guidance

where the conditional and unconditional score functions are trained simultaneously

and combined at inference time to guide the generation. In ControlNet [274], an

additional network is trained to enable a pre-trained diffusion model to incorporate

additional, previously unavailable, conditioning information.

Similar to conditional diffusion models, conditional GFlowNets have been used to

condition generation on reward exponents [16] or combinations of multiple predefined

reward functions [108].

Note that the methods developed in this work can be combined with condi-

tional generative models, for example, conditional diffusion models (or GFlowNets)

𝑝(𝑥|𝑐1), . . . , 𝑝(𝑥|𝑐𝑚) can act as base generative models to be composed.

Image inpainting is an extensively explored controllable generation task. The goal

of inpainting is to restore or reconstruct missing or corrupted parts of an image, or,

formally, sampling 𝑥hidden|𝑥obs ∼ 𝑝(𝑥hidden|𝑥obs), the unobserved part of the image

𝑥hidden given the observed part 𝑥obs. Lugmayr et al. [156], Song et al. [231] proposed

inpainting techniques based on the "replacement" of observed pixels with their known

values (with noise applied at an appropriate) at each step of the diffusion denoising

process. Chung et al. [44], Ho et al. [100] utilized "reconstruction"-based approaches

which introduce an additional guiding term in the denoising update with the goal

of bringing the values in the observed part of the image closer to the known target

values. Trippe et al. [244] developed a method based on particle filtering for inpainting

of protein backbones in 3D. Saharia et al. [218] proposed a diffusion model trained

specifically for image-to-image translation tasks including inpainting.

The task of inpainting is a member of the family of inverse problems, which can be

cast as conditional generation 𝑥|𝑦(𝑥) ∼ 𝑝(𝑥|𝑦(𝑥)), where 𝑦(𝑥) is an observation function

that extracts a limited information summary from 𝑥 (e.g., 𝑦(𝑥) might represent a

downsampled version of image 𝑥). A line of work [42, 118, 207, 218, 231, 259] is focused

on diffusion-based solutions for inverse problems in the image generation domain.

Recently, Mariani et al. [162] used diffusion models for the inverse problem of audio

132

source separation. Ben-Hamu et al. [14] utilized the probability flow interpretation

of diffusion models and addressed image and audio inverse problems and conditional

molecular generation via differentiation through ODE sampler.

Image editing is another instance of controllable generation problems. In this case,

the goal is to modify specific aspects of an existing image according to user-specified

goals while preserving image coherence and fidelity. To address semantic image editing,

Meng et al. [166] and Couairon et al. [50] proposed to first partially noise and then

denoise an image to generate an edited version, possibly conditioned on a segmentation

mask [50]. Collage diffusion [221] is a diffusion model extension that processes multiple

base images accompanied by text prompts and desired locations and produces a collage

by editing the base images and combining layers of edited images. Another line of

work [71, 93, 119, 216] introduced techniques for personalization, concept learning,

prompt manipulation, and direct editing of real images guided by natural language

inputs.

Fine-tuning diffusion models with reward functions or human preference data has

emerged as a promising form of controllable generation. Black et al. [26] interpreted

diffusion as a sequential decision process and employed reinforcement learning to

optimize objectives such as image compressibility, prompt-image alignment (based on

vision-language model feedback), and aesthetic quality (derived from human feedback).

Clark et al. [45] used backpropagation through samplers to optimize differentiable

rewards such as scores from human preference models. Wallace et al. [254] adapted

Direct Preference Optimization [204] to diffusion models, which enables fine-tuning

diffusion models on human preference data directly without the need for the auxiliary

reward model.

Generative model composition and coordination. Compositional generation

approaches combine multiple diffusion processes to control sampling distributions, re-

use pre-trained models, and extend their capabilities. Existing works on compositional

generation differ in how they approach the composition of diffusion processes. Notable

approaches include the resolution of individual steps of generation [11, 49, 103, 142,

133

162, 275], or exact specification of adjusted distributions [64, 97, 261, and our work].

MultiDiffusion [11] performs controlled image generation via the fusion of diffusion

sampling paths. The authors address the generation of panoramic images and scenes

with complex structures. The complex scene is divided into several regions, and the

desired content of each region is described with a specific text prompt. The generation

is performed via the coordination of multiple prompt-conditioned generation paths.

The coordination method maintains a shared global image for the whole space and

reconciles contradicting updates in the intersections of regions by averaging the updates

of individual models whose regions cover a specific intersection. SyncDiffusion [142] is

an extension of MultiDiffusion that aims to address the issue of incoherent patches

in large panoramic images. To that end, SyncDiffusion introduces an additional step

to the MultiDiffusion update to perform a local optimization step on the perceptual

similarity across patches. Zhang et al. [275] extended panoramic generation to more

general scenarios of large image generation supporting arbitrary graph structure of the

overlapping patches comprising the large image (e.g., linear chain, cycle, grid, cube

map). The proposed method, called DiffCollage, translates a given graph structure

into a closed-form formula for the total score expressed through marginal scores of

individual patches. Zhang et al. [275] empirically demonstrated that coordinating

multiple diffusion processes run in parallel outperforms inpainting-based panoramic

image generation [44, 156] in terms of image quality and generation speed.

Corso et al. [49] proposed Particle Guidance, a method for improving sample

efficiency in diffusion models by running multiple diffusion chains with a time-evolving

repulsion force that promotes sample diversity.

Mariani et al. [162] demonstrated that the combination of multiple single-instrument

diffusion models outperforms a joint model in the music source separation problem.

The proposed source separation approach is based on the guidance methods for inverse

problems proposed in [231].

Hinton [97] developed a contrastive divergence minimization procedure for training

products of tractable energy-based models. Learning mixtures of Generative Adversar-

ial Networks has been addressed in [101], where the mixture components are learned

134

simultaneously, and in [242], where the components are learned one by one in an

adaptive boosting fashion. Grover and Ermon [86] developed algorithms for additive

and multiplicative boosting of generative models. Following up on energy-based model

operations [96, 97], Du et al. [62] studied the composition of deep energy-based models.

Du et al. [64] developed algorithms for sampling from energy-based compositions (prod-

ucts, negations) of diffusion models, related to the focus of our work. The algorithm

in [64] introduces additional MCMC sampling steps at each diffusion generation step

to correct the originally biased sampling process (based on an algebraic combination

of individual score functions) toward the target composition. Wu et al. [261] built on

compositions of energy-based diffusion models [62, 64] and developed methods for the

generation of solutions to inverse design problems: multi-body physical simulations

and 2D airfoil design.

Our work proposes a new way to compose pre-trained diffusion models and intro-

duces an unbiased sampling process based on classifier guidance to sample from the

compositions. This avoids the need for corrective MCMC sampling required in prior

work. Our work further applies to GFlowNets, and is, to the best of our knowledge,

the first to address the composition of pre-trained GFlowNets.

This work focuses on the composition of pre-trained models. Assuming that

each pre-trained model represents the distribution of examples demonstrating certain

concepts (e.g. molecular properties), the composition of models is equivalent to

concept composition (e.g. property “A” and property “B” satisfied simultaneously).

The inverse problem is known as “unsupervised concept discovery”, where the goal

is to automatically discover composable concepts from data. Unsupervised concept

discovery and concept composition methods have been proposed for energy-based

models [63] and for text-to-image diffusion models [151].

Compositional generalization. The notion of compositionality has a broad spec-

trum of interpretations across a variety of disciplines including linguistics, cognitive

science, and philosophy. Hupkes et al. [105] collect a list of aspects of compositionality

from linguistical and philosophical theories and designs practical tests for neural

135

language models covering all aspects. Conwell and Ullman [47] empirically examine

the relational understanding of DALL-E 2 [206], a text-guided image generation model,

and point out limitations in the model’s ability to capture relations such as “in”,

“on”, “hanging over”, etc. In this work, we focus on a narrow but well-defined type of

composition where we seek to algebraically combine (compose) probability densities in

a controllable fashion, such that we can emphasize or de-emphasize regions in the data

space where specific base distributions have high density. Our methods are developed

for the setting where we are given access to GFlowNets or diffusion models which can

generate samples from the probability distributions we wish to compose.

Connections between GFlowNets and diffusion models. We develop com-

position operations and methods for sampling from composite distributions for both

GFlowNets and diffusion models. The fact that similar methods apply to both is

rooted in deep connections between the two modeling frameworks. GFlowNets were

initially developed for generating discrete (structured) data [16] and diffusion models

were initially developed for continuous data [99, 226]. Lahlou et al. [134] develop an

extension of GFlowNets for DAGs with continuous state-action spaces. Zhang et al.

[273] point out unifying connections between GFlowNets and other generative model

families, including diffusion models. Diffusion models in a fixed-time discretization can

be interpreted as continuous GFlowNets of a certain structure. Zhang et al. [273] notice

that the discrete DAG flow-matching condition, central to mathematical foundations

of GFlowNets [19], is analogous to the Fokker-Planck equation (Kolmogorov forward

equation), underlying mathematical analysis of continuous-time diffusion models [231].

In this work, we articulate another aspect of the relation between GFlowNets and

diffusion models: in Section 5.5.2 we derive the expressions for mixture GFlowNet

policies and classifier-guided GFlowNet policies analogous to those derived for diffusion

models in prior work [55, 148, 192, 226].

136

5.4 Compositional Sculpting of Generative Models

Consider a scenario where we can access a number of pre-trained generative models.

Each of these “base models” gives rise to a generative distribution 𝑝𝑖(𝑥) over a common

domain 𝒳 . We may wish to compose these distributions such that we can, say, draw

samples that are likely to arise from 𝑝1(𝑥) and 𝑝2(𝑥), or that are likely to arise from

𝑝1(𝑥) but not from 𝑝2(𝑥). In other words, we wish to specify a composition whose

generative distribution we can shape to emphasize and de-emphasize specific base

models.

5.4.1 Binary Composition Operations

For the moment, let us focus on controllably composing two base models. One option

is to specify the composition as a weighted combination ̃︀𝑝(𝑥) =
∑︀2

𝑖=1 𝜔𝑖𝑝𝑖(𝑥) with

positive weights 𝜔1, 𝜔2 which sum to one. These weights allow us to set the prevalence

of each base model in the composition. However, beyond that our control over the

composition is limited. We cannot emphasize regions where, say, 𝑝1 and 𝑝2 both have

high density, or de-emphasize regions where 𝑝2 has high density.

A much more flexible method for shaping a prior distribution ̃︀𝑝(𝑥) to our desires

is conditioning. Following Bayesian inference methodology, we know that when we

condition 𝑥 on some observation 𝑦, the resulting posterior takes the form ̃︀𝑝(𝑥|𝑦) ∝̃︀𝑝(𝑦|𝑥)̃︀𝑝(𝑥). Points 𝑥 that match observation 𝑦 according to ̃︀𝑝(𝑦|𝑥) will have increased

density, whereas the density of points that do not match it decreases. Intuitively, the

term ̃︀𝑝(𝑦|𝑥) has shaped the prior ̃︀𝑝(𝑥) according to 𝑦.

If we define the observation 𝑦1 ∈ {1, 2} as the event that 𝑥 was generated by a

specific base model, we can shape the prior based on the densities of the base models.

We start by defining a uniform prior over 𝑦𝑘, and by defining the conditional density

𝑝(𝑥|𝑦1 = 𝑖) to represent the fact that 𝑥 was generated from 𝑝𝑖(𝑥). This gives us the

following model:

̃︀𝑝(𝑥|𝑦1 =1) = 𝑝1(𝑥), ̃︀𝑝(𝑥|𝑦1 =2) = 𝑝2(𝑥), ̃︀𝑝(𝑦1 =1) = ̃︀𝑝(𝑦1 =2) =
1

2
, (5.4)

137

̃︀𝑝(𝑥) =
2∑︁
𝑖=1

̃︀𝑝(𝑥|𝑦1 = 𝑖)̃︀𝑝(𝑦1 = 𝑖), (5.5)

Notice that under this model, the prior ̃︀𝑝(𝑥) is simply a uniform mixture of the base

models. The posterior probability ̃︀𝑝(𝑦1 =1|𝑥) implied by this model tells us how likely

it is that 𝑥 was generated by 𝑝1(𝑥) rather than 𝑝2(𝑥):

̃︀𝑝(𝑦1 =1|𝑥) = 1− ̃︀𝑝(𝑦1 =2|𝑥) =
𝑝1(𝑥)

𝑝1(𝑥) + 𝑝2(𝑥)
, (5.6)

Note that ̃︀𝑝(𝑦1 = 1|𝑥) is the output of the optimal classifier trained to tell apart

distributions 𝑝1(𝑥) and 𝑝2(𝑥).

The goal stated at the beginning of this section was to realize compositions which

would generate samples likely to arise from both 𝑝1(𝑥) and 𝑝2(𝑥) or likely to arise

from 𝑝1(𝑥) but not 𝑝2(𝑥). To this end we introduce a second observation 𝑦2 ∈ {1, 2}
such that 𝑦1 and 𝑦2 are independent and identically distributed given 𝑥. The resulting

full model and inferred posterior are:

̃︀𝑝(𝑥, 𝑦1, 𝑦2) = ̃︀𝑝(𝑥)̃︀𝑝(𝑦1|𝑥)̃︀𝑝(𝑦2|𝑥), (5.7)

̃︀𝑝(𝑥) =
1

2
𝑝1(𝑥) +

1

2
𝑝2(𝑥), ̃︀𝑝(𝑦𝑘= 𝑖|𝑥) =

𝑝𝑖(𝑥)

𝑝1(𝑥) + 𝑝2(𝑥)
, 𝑘, 𝑖 ∈ {1, 2}, (5.8)

̃︀𝑝(𝑥|𝑦1 = 𝑖, 𝑦2 =𝑗) ∝ ̃︀𝑝(𝑥)̃︀𝑝(𝑦1 = 𝑖|𝑥)̃︀𝑝(𝑦2 =𝑗|𝑥) ∝
𝑝𝑖(𝑥)𝑝𝑗(𝑥)

𝑝1(𝑥) + 𝑝2(𝑥)
. (5.9)

The posterior ̃︀𝑝(𝑥|𝑦1 = 𝑖, 𝑦2 = 𝑗) shows clearly how conditioning on the observations

𝑦1, 𝑦2 has shaped the prior mixture into a new expression which accentuates regions

in the posterior where the observed base models 𝑖, 𝑗 have high density.

Conditioning on observations 𝑦1 =1 (“𝑥 is likely to have been drawn from 𝑝1 rather

than 𝑝2”) and 𝑦2 = 2 (“𝑥 is likely to have been drawn from 𝑝2 rather than 𝑝1”), or

equivalently 𝑦1 =2, 𝑦2 =1, results in the posterior distribution

(𝑝1 ⊗ 𝑝2)(𝑥) := 𝑝(𝑥|𝑦1 =1, 𝑦2 =2) ∝
𝑝1(𝑥)𝑝2(𝑥)

𝑝1(𝑥) + 𝑝2(𝑥)
. (5.10)

138

We will refer to this posterior as the “harmonic mean of 𝑝1 and 𝑝2”, and denote it as a

binary operation 𝑝1 ⊗ 𝑝2. Its value is high only at points that have high likelihood

under both 𝑝1(𝑥) and 𝑝2(𝑥) at the same time (Figure 5-1(c)). Thus, the harmonic

mean is an alternative to the product operation for EBMs. The harmonic mean

is commutative (𝑝1 ⊗ 𝑝2 = 𝑝2 ⊗ 𝑝1) and is undefined when 𝑝1 and 𝑝2 have disjoint

supports, since then the RHS of (5.10) is zero everywhere.

Conditioning on observations 𝑦1 =1 (“𝑥 is likely to have been drawn from 𝑝1 rather

than 𝑝2”) and 𝑦2 =1 (same) results in the posterior distribution

(𝑝1◑ 𝑝2)(𝑥) := ̃︀𝑝(𝑥|𝑦1 =1, 𝑦2 =1) ∝

(︀
𝑝1(𝑥)

)︀2
𝑝1(𝑥) + 𝑝2(𝑥)

. (5.11)

We refer to this operation, providing an alternative to the negation operation in EBMs,

as the “contrast of 𝑝1 and 𝑝2”, and will denote it as a binary operator (𝑝1◑ 𝑝2)(𝑥).

The ratio in equation (5.11) is strictly increasing as a function of 𝑝1(𝑥) and strictly

decreasing as a function of 𝑝2(𝑥), so that the ratio is high when 𝑝1(𝑥) is high and 𝑝2(𝑥)

is low (Figure 5-1(d)). The contrast is not commutative (𝑝1◑ 𝑝2 ̸= 𝑝2◑ 𝑝1, unless

𝑝1 = 𝑝2). We will denote the reverse contrast as 𝑝1◐ 𝑝2 = 𝑝2◑ 𝑝1.

Note that the original distributions 𝑝1 and 𝑝2 can be expressed as mixtures of the

harmonic mean and the contrast distributions:

𝑝1 = 𝑍⊗(𝑝1 ⊗ 𝑝2) + 𝑍◑ (𝑝1◑ 𝑝2), 𝑝2 = 𝑍⊗(𝑝1 ⊗ 𝑝2) + 𝑍◑ (𝑝2◑ 𝑝1),

𝑍⊗ =
∑︁
𝑥

𝑝1(𝑥)𝑝2(𝑥)

𝑝1(𝑥) + 𝑝2(𝑥)
= 1− 𝑍◑ .

Controlling the individual contributions of 𝑝1 and 𝑝2 to the composition.

We modify model (5.7) and introduce an interpolation parameter 𝛼 in order to have

more control over the extent of individual contributions of 𝑝1 and 𝑝2 to the composition:

̃︀𝑝(𝑥, 𝑦1, 𝑦2;𝛼) = ̃︀𝑝(𝑥)̃︀𝑝(𝑦1|𝑥)̃︀𝑝(𝑦2|𝑥;𝛼), ̃︀𝑝(𝑥) =
1

2
𝑝1(𝑥) +

1

2
𝑝2(𝑥), (5.12a)

̃︀𝑝(𝑦1 = 𝑖|𝑥) =
𝑝𝑖(𝑥)

𝑝1(𝑥) + 𝑝2(𝑥)
, (5.12b)

139

̃︀𝑝(𝑦2 = 𝑖|𝑥;𝛼)=

(︀
𝛼𝑝1(𝑥)

)︀[𝑖=1] ·
(︀
(1−𝛼)𝑝2(𝑥)

)︀[𝑖=2]

𝛼𝑝1(𝑥) + (1− 𝛼)𝑝2(𝑥)
, (5.12c)

where 𝛼 ∈ (0, 1) and [·] denotes the indicator function. Conditional distributions in

this model give harmonic interpolation1 and parameterized contrast:

(𝑝1 ⊗(1−𝛼) 𝑝2)(𝑥) ∝
𝑝1(𝑥)𝑝2(𝑥)

𝛼𝑝1(𝑥) + (1− 𝛼)𝑝2(𝑥)
, (5.13)

(𝑝1◑ (1−𝛼) 𝑝2)(𝑥) ∝

(︀
𝑝1(𝑥)

)︀2
𝛼𝑝1(𝑥) + (1− 𝛼)𝑝2(𝑥)

. (5.14)

Operation chaining. As the binary operations we have introduced result in proper

distributions, we can create new 𝑁 -ary operations by chaining binary (and 𝑁 -ary)

operations together. For instance, chaining binary harmonic means gives the harmonic

mean of three distributions

((𝑝1 ⊗ 𝑝2)⊗ 𝑝3)(𝑥) = (𝑝1 ⊗ (𝑝2 ⊗ 𝑝3))(𝑥)

∝
𝑝1(𝑥)𝑝2(𝑥)𝑝3(𝑥)

𝑝1(𝑥)𝑝2(𝑥) + 𝑝1(𝑥)𝑝3(𝑥) + 𝑝2(𝑥)𝑝3(𝑥)
. (5.15)

Comparison with “energy” operations. The harmonic mean and contrast opera-

tions we have introduced here are analogous to the product and negation operations

for EBMs respectively. Although the harmonic mean and product operations are quite

similar in practice, unlike the negation operation our proposed contrast operation

always results in a valid probability distribution. Figure 5-2 shows the results of these

operations applied to two Gaussian distributions. The harmonic mean and product,

shown in panel (b), are both concentrated on points that have high probability under

both Gaussians. Figure 5-2(c) shows parameterized contrasts 𝑝1◑ (1−𝛼)𝑝2 at different

values of 𝛼, and panel (d) shows negations 𝑝1 neg𝛾 𝑝2 at different values of 𝛾. The

effect of negation at 𝛾 = 0.1 resembles the effect of the contrast operation: the

density retreats from the high likelihood region of 𝑝2. However, as 𝛾 increases to

0.5 the distribution starts to concentrate excessively on the values 𝑥 < −3. This is
1the harmonic interpolation approaches 𝑝1 when 𝛼→ 0 and 𝑝2 when 𝛼→ 1

140

−4 −3 −2 −1 0 1 2 3 4
x

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

p(
x)

p1
p2

(a) Base distributions 𝑝1, 𝑝2

−4 −3 −2 −1 0 1 2 3 4
x

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

p(
x)

p1⊗ p2
p1 prod p2

(b) HM (ours), Product

−4 −3 −2 −1 0 1 2 3 4
x

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

p(
x)

� = 0.001
� = 0.050
� = 0.500

(c) Contrasts 𝑝1◑ (1−𝛼) 𝑝2
(ours)

−4 −3 −2 −1 0 1 2 3 4
x

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

p(
x)

 = 0.50
 = 0.25
 = 0.10

(d) Negations 𝑝1 neg𝛾 𝑝2

Figure 5-2: Compositional sculpting and energy operations applied to 1D
Gaussian distributions. (a) Densities of base 1D Gaussian distributions 𝑝1(𝑥) =
𝒩 (𝑥;−5/4, 1), 𝑝2(𝑥) = 𝒩 (𝑥; 5/4, 1/2). (b) harmonic mean 𝑝1⊗𝑝2 and product 𝑝1 prod 𝑝2
(c) parameterized contrasts 𝑝1◑(1−𝛼) 𝑝2 at different values of 𝛼 (d) negations 𝑝1 neg𝛾 𝑝2
at different values of 𝛾. The curves show the probability density functions of base
distributions and their compositions.

due to the instability of division 𝑝1(𝑥)/(𝑝2(𝑥))𝛾 in regions where 𝑝2(𝑥)→ 0. Below, we

formally discuss the properties of compositional sculpting operations and energy-based

operations.

Harmonic mean and product are not defined for pairs of distributions 𝑝1, 𝑝2 which

have disjoint supports. In such cases, attempts at evaluation of the expressions for

𝑝1 ⊗ 𝑝2 and 𝑝1 prod 𝑝2 will lead to impossible probability distributions that have

zero probability mass (density) everywhere2. The result of both harmonic mean and

product are correctly defined for any pair of distributions 𝑝1, 𝑝2 that have non-empty

support intersection.

Notably, contrast is well-defined for any input distributions while negation is ill-

defined for some input distributions 𝑝1, 𝑝2 as formally stated below (see Figure 5-2 (d)

for a concrete example).

2Informal interpretation: distributions with disjoint supports have empty “intersections” (think of
the intersection of sets analogy)

141

Proposition 5.4.1.

1. For any 𝛼 ∈ (0, 1) the parameterized contrast operation 𝑝1◑ (1−𝛼) 𝑝2 (5.13) is

well-defined: gives a proper distribution for any pair of distributions 𝑝1, 𝑝2.

2. For any 𝛾 ∈ (0, 1) there are infinitely many pairs of distributions 𝑝1, 𝑝2 such

that the negation 𝑝1 neg𝛾 𝑝2 (5.3) results in an improper (non-normalizable)

distribution.

5.4.2 Compositional Sculpting: General Approach

The approach we used above for specifying compositions of two base models con-

trolled by two observations can be generalized to compositions of 𝑚 base models

𝑝1(𝑥), . . . , 𝑝𝑚(𝑥) controlled by 𝑛 observations. At the end of the previous section we

showed that operator chaining can already realize compositions of 𝑚 base models.

However, our generalized method allows us to specify compositions more flexibly, and

results in different compositions from operator chaining. We propose to define an

augmented probabilistic model ̃︀𝑝(𝑥, 𝑦1, . . . , 𝑦𝑛) as a joint distribution over the original

objects 𝑥 ∈ 𝒳 and 𝑛 observation variables 𝑦1 ∈ 𝒴 , . . . , 𝑦𝑛 ∈ 𝒴 where 𝒴 = {1, . . . ,𝑚}.
By defining appropriate conditionals 𝑝(𝑦𝑘|𝑥) we will be able to controllably shape a

prior ̃︀𝑝(𝑥) into a posterior ̃︀𝑝(𝑥|𝑦1, . . . , 𝑦𝑛) based on the base models.

As in the binary case, we propose to use a uniformly-weighted mixture of the base

distributions ̃︀𝑝(𝑥) = 1
𝑚

∑︀𝑚
𝑖=1 𝑝𝑖(𝑥). The support of this mixture is the union of the

supports of the base models:
⋃︀𝑚
𝑖=1 supp{𝑝𝑖(𝑥)} = supp{̃︀𝑝(𝑥)}. This is essential as the

prior can only be shaped in places where it has non-zero density. As before we define

the conditionals 𝑝(𝑦𝑘= 𝑖|𝑥) to correspond to the observation that 𝑥 was generated by

base model 𝑖. This resulting full model is

̃︀𝑝(𝑥, 𝑦1, . . . , 𝑦𝑛) = ̃︀𝑝(𝑥)
𝑛∏︁
𝑘=1

̃︀𝑝(𝑦𝑘|𝑥), ̃︀𝑝(𝑥) =
1

𝑚

𝑚∑︁
𝑖=1

𝑝𝑖(𝑥), (5.16)

̃︀𝑝(𝑦𝑘= 𝑖) =
1

𝑚
∀𝑘 ∈ {1, . . . , 𝑛}, ̃︀𝑝(𝑦𝑘= 𝑖|𝑥) =

𝑝𝑖(𝑥)∑︀𝑚
𝑗=1 𝑝𝑗(𝑥)

∀𝑘 ∈ {1, . . . , 𝑛}. (5.17)

142

Note that under this model the mixture can be represented as the marginal of the

joint distribution ̃︀𝑝(𝑥, 𝑦𝑘) = ̃︀𝑝(𝑥|𝑦𝑘)̃︀𝑝(𝑦𝑘) where 𝑦 ∈ {1, . . . ,𝑚} for any one of the

observations 𝑦𝑘.

The inferred posterior over 𝑥 for this model is

̃︀𝑝(𝑥|𝑦1 = 𝑖1, . . . , 𝑦𝑛= 𝑖𝑛) ∝ ̃︀𝑝(𝑥)̃︀𝑝(𝑦1 = 𝑖1, . . . , 𝑦𝑛= 𝑖𝑛|𝑥) (5.18)

∝ ̃︀𝑝(𝑥)
𝑛∏︁
𝑘=1

̃︀𝑝(𝑦𝑘= 𝑖𝑘|𝑥) (5.19)

∝

(︃
𝑛∏︁
𝑘=1

𝑝𝑖𝑘(𝑥)

)︃⧸︂(︃
𝑚∑︁
𝑗=1

𝑝𝑗(𝑥)

)︃𝑛−1

. (5.20)

The posterior ̃︀𝑝(𝑥|𝑦1 = 𝑖1, . . . , 𝑦𝑛= 𝑖𝑛) is a composition of distributions {𝑝𝑖(𝑥)}𝑚𝑖=1

that can be adjusted by choosing values for 𝑦1, . . . , 𝑦𝑛. By adding or omitting an

observation 𝑦𝑘 = 𝑖 we can sculpt the posterior to our liking, emphasizing or de-

emphasizing regions of 𝒳 where 𝑝𝑖 has high density. The observations can be introduced

with multiplicities (e.g., 𝑦1 = 1, 𝑦2 = 1, 𝑦3 = 2) to further strengthen the effect.

Moreover, one can choose to introduce all observations simultaneously as in (5.18) or

sequentially as in (5.19). As we show below (Section 5.5.1 for GFlowNets; Section 5.5.3

for diffusion models), the composition (5.18) can be realized by a sampling policy that

can be expressed as a function of the pre-trained (base) sampling policies.

Special instances and general formulation. The general approach outlined in

this section is not limited to choices we made to construct the model in equation

(5.16), i.e. ̃︀𝑝(𝑥) does not have to be a uniformly weighted mixture of the base

distributions, 𝑦1, . . . , 𝑦𝑛 do not have to be independent and identically distributed

given 𝑥, and different choices of the likelihood ̃︀𝑝(𝑦= 𝑖|𝑥) are possible. For instance, the

parameterized binary operations (5.13) are derived from a model where the likelihoods

of the observations ̃︀𝑝(𝑦1|𝑥), ̃︀𝑝(𝑦2|𝑥) differ.

Sampling from conditional distributions via classifier guidance. In Section

5.5 we introduce a method that allows us to sample from compositions of distributions

143

𝑝1, . . . , 𝑝𝑚 implied by a chosen set of variables 𝑦1, . . . , 𝑦𝑛. To do this, we note the

similarity between (5.18) and classifier guidance. Indeed, we can sample from the

posterior by applying classifier guidance to ̃︀𝑝(𝑥). Classifier guidance can either be

applied in a single shot as in (5.18), or sequentially as in (5.19). Any chain of operations

can be realized via sequential guidance with a new classifier trained at each stage of

the chaining. The classifier can be trained on samples generated from the pre-trained

base models 𝑝1, . . . , 𝑝𝑚. We show how to apply this idea to GFlowNets (Sections 5.5.1,

5.5.2) and diffusion models (Sections 5.5.3, 5.5.4).

5.5 Compositional Sculpting of Iterative Generative

Processes

5.5.1 Composition of GFlowNets

We will now cover how the model above can be applied to compose GFlowNets, and

how one can use classifier guidance to sample from the composition. Besides a sample

𝑥 from 𝑝𝑖(𝑥), a GFlowNet also generates a trajectory 𝜏 which ends in the state 𝑥.

Thus, we extend the model ̃︀𝑝(𝑥, 𝑦1, . . . , 𝑦𝑛), described above, and introduce 𝜏 as a

variable with conditional distribution ̃︀𝑝(𝜏 |𝑦𝑘= 𝑖) =
∏︀|𝜏 |−1

𝑡=0 𝑝𝑖,𝐹 (𝑠𝑡+1|𝑠𝑡), where 𝑝𝑖,𝐹 is

the forward policy of the GFlowNet that samples from 𝑝𝑖.

Our approach for sampling from the composition is conceptually simple. Given 𝑚

base GFlowNets that sample from 𝑝1, . . . , 𝑝𝑚 respectively, we start by defining the

prior ̃︀𝑝(𝑥) as the uniform mixture of these GFlowNets. Proposition 5.5.1 shows that

this mixture can be realized by a GFlowNet policy which can be constructed directly

from the forward policies of the base GFlowNets. We then apply classifier guidance to

this mixture to sample from the composition. Proposition 5.5.2 shows that classifier

guidance results in a new GFlowNet policy which can be constructed directly from

the GFlowNet being guided.

Proposition 5.5.1 (GFlowNet mixture policy). Suppose distributions 𝑝1(𝑥), . . . , 𝑝𝑚(𝑥)

are realized by GFlowNets with forward policies 𝑝1,𝐹 (·|·), . . . , 𝑝𝑚,𝐹 (·|·). Then, the

144

mixture distribution 𝑝M(𝑥) =
∑︀𝑚

𝑖=1 𝜔𝑖𝑝𝑖(𝑥) with 𝜔1, . . . , 𝜔𝑚 ≥ 0 and
∑︀𝑚

𝑖=1 𝜔𝑖 = 1 is

realized by the GFlowNet forward policy

𝑝M,𝐹 (𝑠′|𝑠) =
𝑚∑︁
𝑖=1

𝑝(𝑦 = 𝑖|𝑠)𝑝𝑖,𝐹 (𝑠′|𝑠), (5.21)

where 𝑦 is a random variable such that the joint distribution of a GFlowNet trajectory

𝜏 and 𝑦 is given by 𝑝(𝜏, 𝑦= 𝑖) = 𝜔𝑖𝑝𝑖(𝜏) for 𝑖 ∈ {1, . . . ,𝑚}.

The proof of Proposition 5.5.1 is provided in Appendix C.3.1.

Proposition 5.5.2 (GFlowNet classifier guidance). Consider a joint distribution

𝑝(𝑥, 𝑦) over a discrete space 𝒳 ×𝒴 such that the marginal distribution 𝑝(𝑥) is realized

by a GFlowNet with forward policy 𝑝𝐹 (·|·). Further, assume that the joint distribution

of 𝑥, 𝑦, and GFlowNet trajectories 𝜏 = (𝑠0 → . . .→ 𝑠𝑛 = 𝑥) decomposes as 𝑝(𝜏, 𝑥, 𝑦) =

𝑝(𝜏, 𝑥)𝑝(𝑦|𝑥), i.e. 𝑦 is independent of the intermediate states 𝑠0, . . . , 𝑠𝑛−1 in 𝜏 given

𝑥. Then,

1. For all non-terminal nodes 𝑠 ∈ 𝒮 ∖ 𝒳 in the GFlowNet DAG (𝒮,𝒜), the proba-

bilities 𝑝(𝑦|𝑠) satisfy

𝑝(𝑦|𝑠) =
∑︁

𝑠′:(𝑠→𝑠′)∈𝒜

𝑝𝐹 (𝑠′|𝑠)𝑝(𝑦|𝑠′). (5.22)

2. The conditional distribution 𝑝(𝑥|𝑦) is realized by the classifier-guided policy

𝑝𝐹 (𝑠′|𝑠, 𝑦) = 𝑝𝐹 (𝑠′|𝑠)𝑝(𝑦|𝑠
′)

𝑝(𝑦|𝑠) . (5.23)

Note that (5.22) ensures that 𝑝𝐹 (𝑠′|𝑠, 𝑦) is a valid policy, i.e.∑︀
𝑠′:(𝑠→𝑠′)∈𝒜 𝑝𝐹 (𝑠′|𝑠, 𝑦) = 1. The proof of Proposition 5.5.2 is provided in

Appendix C.3.2.

Proposition 5.5.1 is an analogous to results on mixtures of diffusion mod-

els (Peluchetti 192, Theorem 1, Lipman et al. 148, Theorem 1). Proposition 5.5.2

is analogous to classifier guidance for diffusion models [55, 226]. To the best of our

knowledge, our work is the first to derive both results for GFlowNets.

145

Both equations (5.21) and (5.23) involve the inferential distribution 𝑝(𝑦|𝑠). Prac-

tical implementations of both mixture and conditional forward policies, therefore,

require training a classifier on trajectories sampled from the given GFlowNets.

Theorem 5.5.3 summarizes our approach.

Theorem 5.5.3. Suppose distributions 𝑝1(𝑥), . . . , 𝑝𝑚(𝑥) are realized by GFlowNets

with forward policies 𝑝1,𝐹 (·|·), . . . , 𝑝𝑚,𝐹 (·|·) respectively. Let 𝑦1, . . . , 𝑦𝑛 be random

variables defined by (5.16). Then, the conditional ̃︀𝑝(𝑥|𝑦1, . . . , 𝑦𝑛) is realized by the

forward policy

𝑝𝐹 (𝑠′|𝑠, 𝑦1, . . . , 𝑦𝑛) =
̃︀𝑝(𝑦1, . . . , 𝑦𝑛|𝑠′)̃︀𝑝(𝑦1, . . . , 𝑦𝑛|𝑠)

𝑚∑︁
𝑖=1

𝑝𝑖,𝐹 (𝑠′|𝑠)̃︀𝑝(𝑦= 𝑖|𝑠) (5.24)

Note that the result of conditioning on observations 𝑦1, . . . , 𝑦𝑛 is just another

GFlowNet policy. Therefore, to condition on more observations and build up the

composition further, we can simply apply classifier guidance again to the policy

constructed in Theorem 5.5.3.

5.5.2 Classifier Training (GFlowNets)

The evaluation of policy (5.24) requires knowledge of the probabilities ̃︀𝑝(𝑦1, . . . , 𝑦𝑛|𝑠).
The probabilities ̃︀𝑝(𝑦|𝑠) required for constructing the mixture can be derived from̃︀𝑝(𝑦1, . . . , 𝑦𝑛|𝑠). These probabilities can be estimated by a classifier fitted to trajectories

sampled from the base GFlowNets 𝑝1, . . . , 𝑝𝑚. Below we specify the sampling scheme

and the objective for this classifier.

Let ̃︀𝑄𝜑(𝑦1, . . . , 𝑦𝑛|𝑠) be a classifier with parameters 𝜑 that we wish to train to

approximate the ground-truth conditional: ̃︀𝑄𝜑(𝑦1, . . . , 𝑦𝑛|𝑠) ≈ ̃︀𝑝(𝑦1, . . . , 𝑦𝑛|𝑠). Note

that ̃︀𝑄𝜑 represents the joint distribution of 𝑦1, . . . , 𝑦𝑛 given a state 𝑠. Under the

model (5.16) the variables 𝑦1, . . . , 𝑦𝑛 are dependent given a state 𝑠 ∈ 𝒮 ∖ 𝒳 , but,

are independent given a terminal state 𝑥 ∈ 𝒳 . This observation motivates separate

treatment of terminal and non-terminal states.

146

Learning the terminal state classifier. For a terminal state 𝑥, the variables

𝑦1, . . . , 𝑦𝑛 are independent and identically distributed. Hence we can use the factoriza-

tion ̃︀𝑄𝜑(𝑦1, . . . , 𝑦𝑛|𝑥) =
∏︀𝑛

𝑘=1
̃︀𝑄𝜑(𝑦𝑘|𝑥). Moreover, all distributions on the r.h.s. must

be the same. In other words, for the terminal classifier it is, therefore, enough to learn

just ̃︀𝑄𝜑(𝑦1|𝑥). This marginal classifier can be learned by minimizing the cross-entropy

loss

ℒT(𝜑) = E
(̂︀𝑥,̂︀𝑦1)∼̃︀𝑝(𝑥,𝑦1)

[︁
− log ̃︀𝑄𝜑(𝑦1 =̂︀𝑦1|𝑥=̂︀𝑥)

]︁
. (5.25)

Sampling from ̃︀𝑝(𝑥, 𝑦1) can be performed according to the factorization ̃︀𝑝(𝑦1)̃︀𝑝(𝑥|𝑦1).
First, ̂︀𝑦1 is sampled from ̃︀𝑝(𝑦1), which is uniform under our choice of ̃︀𝑝(𝑥). Then,̂︀𝑥|(𝑦1 =̂︀𝑦1) is generated from the base GFlowNet 𝑝̂︀𝑦1 . For our choice of ̃︀𝑝(𝑥), we can

derive from (5.16) that ̃︀𝑝(𝑥|𝑦=̂︀𝑦1) = 𝑝̂︀𝑦1(𝑥).

Learning the non-terminal state classifier. Given a non-terminal state 𝑠 ∈ 𝒮∖𝒳 ,

we need to model 𝑦1, . . . , 𝑦𝑛 jointly. In order to train the classifier one needs to sample

tuples (̂︀𝑠, ̂︀𝑦1, . . . , ̂︀𝑦𝑛). Non-terminal states 𝑠 can be generated as intermediate states

in trajectories 𝜏 = (𝑠0 → 𝑠1 → . . .→ 𝑥). Given a sampled trajectory ̂︀𝜏 and a set of

labels ̂︀𝑦1, . . . , ̂︀𝑦𝑛 we denote the total cross-entropy loss of all non-terminal states in ̂︀𝜏
Algorithm 2 Compositional Sculpting: classifier training

1: Initialize 𝜑 and set 𝜑 = 𝜑
2: for step = 1, . . . , num_steps do
3: for 𝑖 = 1, . . . ,𝑚 do
4: Sample ̂︀𝜏𝑖 ∼ 𝑝𝑖(𝜏)
5: end for

6: ℒ𝑇 (𝜑) = −
𝑚∑︁
𝑖=1

log ̃︀𝑄𝜑(𝑦1 = 𝑖|𝑥=̂︀𝑥𝑖) {Terminal state loss (5.25)}

7: 𝑤𝑖(̂︀𝑥𝑗;𝜑)= ̃︀𝑄𝜑 (𝑦𝑘= 𝑖|𝑥=̂︀𝑥𝑗), 𝑖, 𝑗 ∈ {1, . . .𝑚} {Probability estimates}

8: ℒ𝑁(𝜑, 𝜑) =
𝑚∑︁

̂︀𝑦1=1

. . .

𝑚∑︁
̂︀𝑦𝑛=1

(︃
𝑛∏︁
𝑘=2

𝑤̂︀𝑦𝑘(̂︀𝑥̂︀𝑦1 ;𝜑)

)︃
ℓ(̂︀𝜏̂︀𝑦1 , ̂︀𝑦1, . . . ̂︀𝑦𝑛;𝜑) {Non-terminal

state loss (5.26)-(5.27)}
9: ℒ(𝜑, 𝜑) = ℒ𝑇 (𝜑) + 𝛾(step) · ℒ𝑁(𝜑, 𝜑)

10: Update 𝜑 using ∇𝜑ℒ(𝜑, 𝜑); update 𝜑 = 𝛽𝜑+ (1− 𝛽)𝜑
11: end for

147

by

ℓ(̂︀𝜏 , ̂︀𝑦1, . . . , ̂︀𝑦𝑛;𝜑) =

|𝜏 |−1∑︁
𝑡=0

[︁
− log ̃︀𝑄𝜑(𝑦1 =̂︀𝑦1, . . . , 𝑦𝑛=̂︀𝑦𝑛|𝑠=̂︀𝑠𝑡)]︁ . (5.26)

The pairs (̂︀𝜏 , ̂︀𝑦1) can be generated via a sampling scheme similar to the one used for

the terminal state classifier loss above: 1) ̂︀𝑦1 ∼ ̃︀𝑝(𝑦1) and 2) ̂︀𝜏 ∼ 𝑝̂︀𝑦1(𝜏). Samplinĝ︀𝑦2, . . . , ̂︀𝑦𝑛 given ̂︀𝜏 (and ̂︀𝑥, the terminal state of ̂︀𝜏) requires access to the values̃︀𝑝(𝑦𝑘 =̂︀𝑦𝑘|̂︀𝑥), but these are not directly available. However, if the terminal classifier

is learned as described above, the estimates 𝑤𝑖(̂︀𝑥;𝜑) = ̃︀𝑄𝜑(𝑦1 = 𝑖|𝑥=̂︀𝑥) can be used

instead.

We described a training scheme where the loss and the sampling procedure for

the non-terminal state classifier rely on the estimates produced by the terminal state

classifier. In principle, one could use a two-phase procedure by first learning the

terminal state classifier, and then learning the non-terminal state classifier using the

estimates provided by the fixed terminal state classifier. However, it is possible to train

both classifiers in one run, provided that we address potential training instabilities due

to the feedback loop between the non-terminal and terminal classifiers. We employ

the “target network” technique developed in the context of deep Q-learning [172].

We introduce a “target network” parameter vector 𝜑 which is used to produce the

estimates 𝑤𝑖(̂︀𝑥;𝜑) for the non-terminal state loss. We update 𝜑 as the exponential

moving average of the recent iterates of 𝜑.

After putting all components together the training loss for the non-terminal state

classifier is

ℒ𝑁(𝜑, 𝜑) = E
(̂︀𝜏 ,̂︀𝑦1)∼̃︀𝑝(𝜏,𝑦1)

⎡⎣ 𝑚∑︁
̂︀𝑦2=1

· · ·
𝑚∑︁

̂︀𝑦𝑛=1

(︃
𝑛∏︁
𝑘=2

𝑤̂︀𝑦𝑘(̂︀𝑥;𝜑)

)︃
ℓ(̂︀𝜏 , ̂︀𝑦1, . . . , ̂︀𝑦𝑛;𝜑)

⎤⎦ . (5.27)

We refer the reader to Appendix C.3.4 for a more detailed derivation of the loss (5.27).

Note that equation (5.27) involves summation over ̂︀𝑦2, . . . ̂︀𝑦𝑛 with 𝑚𝑛−1 terms in

the sum. If values of 𝑛 and 𝑚 are small, the sum can be evaluated directly. In

general, one could trade off estimation accuracy for improved speed by replacing the

summation with Monte Carlo estimation. In this case, the values ̂︀𝑦𝑘 are sampled from

148

the categorical distributions 𝑄𝜑(𝑦|𝑥). Note that labels can be sampled in parallel

since 𝑦𝑖 are independent given 𝑥.

Algorithm 2 shows the complete classifier training procedure.

5.5.3 Composition of Diffusion Models

In this section, we show how the method introduced above can be applied to diffusion

models. First, we adapt the model we introduced in (5.16)-(5.19) to diffusion models.

A diffusion model trained to sample from 𝑝𝑖(𝑥) generates a trajectory 𝜏 = {𝑥𝑡}𝑇𝑡=0

over a range of time steps which starts with a randomly sampled state 𝑥𝑇 and ends in

𝑥0, where 𝑥0 has distribution 𝑝𝑖,𝑡=0(𝑥) = 𝑝𝑖(𝑥). Thus, we must adapt our model to

reflect this. We introduce a set of mutually dependent variables 𝑥𝑡 for 𝑡 ∈ (0, 𝑇] with

as conditional distribution the transition kernel of the diffusion model 𝑝𝑖(𝑥𝑡|𝑥0).

Given 𝑚 base diffusion models that sample from 𝑝1, . . . , 𝑝𝑚 respectively, we define

the prior ̃︀𝑝(𝑥) as a mixture of these diffusion models. Proposition 5.5.4 shows that

this mixture is a diffusion model that can be constructed directly from the base

diffusion models. We then apply classifier guidance to this mixture to sample from the

composition. We present an informal version of the proposition below. The required

assumptions and the proof are provided in Appendix C.3.5.

Proposition 5.5.4 (Diffusion mixture SDE). Suppose distributions 𝑝1(𝑥), . . . , 𝑝𝑚(𝑥)

are realized by diffusion models with forward SDEs 𝑑𝑥𝑖,𝑡 = 𝑓𝑖,𝑡(𝑥𝑖,𝑡) 𝑑𝑡 + 𝑔𝑖,𝑡 𝑑𝑤𝑖,𝑡

and score functions 𝑠𝑖,𝑡(·), respectively. Then, the mixture distribution 𝑝M(𝑥) =∑︀𝑚
𝑖=1 𝜔𝑖𝑝𝑖(𝑥) with 𝜔1 . . . 𝜔𝑚 ≥ 0 and

∑︀𝑚
𝑖=1 𝜔𝑖 = 1 is realized by a diffusion model

with forward SDE

𝑑𝑥𝑡 =

[︃
𝑚∑︁
𝑖=1

𝑝(𝑦= 𝑖|𝑥𝑡)𝑓𝑖,𝑡(𝑥𝑡)
]︃

⏟ ⏞
𝑓𝑀,𝑡(𝑥𝑡)

𝑑𝑡+

⎯⎸⎸⎷ 𝑚∑︁
𝑖=1

𝑝(𝑦= 𝑖|𝑥𝑡)𝑔2𝑖,𝑡⏟ ⏞
𝑔𝑀,𝑡(𝑥𝑡)

𝑑𝑤𝑡, (5.28)

149

and backward SDE

𝑑𝑥𝑡 =

[︃
𝑚∑︁
𝑖=1

𝑝(𝑦= 𝑖|𝑥𝑡)
(︁
𝑓𝑖,𝑡(𝑥𝑡)− 𝑔2𝑖,𝑡𝑠𝑖,𝑡(𝑥𝑡)

)︁]︃
𝑑𝑡+

⎯⎸⎸⎷ 𝑚∑︁
𝑖=1

𝑝(𝑦= 𝑖|𝑥𝑡)𝑔2𝑖,𝑡 𝑑𝑤𝑡, (5.29)

with

𝑝(𝑦= 𝑖|𝑥𝑡) =
𝜔𝑖𝑝𝑖,𝑡(𝑥𝑡)∑︀𝑚
𝑗=1 𝜔𝑗𝑝𝑗,𝑡(𝑥𝑡)

. (5.30)

If the base diffusion models have a common forward SDE 𝑑𝑥𝑖,𝑡 = 𝑓𝑡(𝑥𝑖,𝑡) 𝑑𝑡+𝑔𝑡 𝑑𝑤𝑖,𝑡,

equations (5.28)-(5.29) simplify to

𝑑𝑥𝑡 = 𝑓𝑡(𝑥𝑡)𝑑𝑡+𝑔𝑡𝑑𝑤𝑡, 𝑑𝑥𝑡 =

[︃
𝑓𝑡(𝑥𝑡)− 𝑔2𝑡

(︃
𝑚∑︁
𝑖=1

𝑝(𝑦= 𝑖|𝑥𝑡)𝑠𝑖,𝑡(𝑥𝑡)
)︃]︃

𝑑𝑡+𝑔𝑡𝑑𝑤𝑡. (5.31)

Theorem 5.5.5 summarizes the overall approach.

Theorem 5.5.5. Suppose distributions 𝑝1(𝑥), . . . , 𝑝𝑚(𝑥) are realized by diffusion mod-

els with forward SDEs 𝑑𝑥𝑖,𝑡 = 𝑓𝑖,𝑡(𝑥𝑖,𝑡) 𝑑𝑡 + 𝑔𝑖,𝑡 𝑑𝑤𝑖,𝑡 and score functions 𝑠𝑖,𝑡(·), re-

spectively. Let 𝑦1, . . . 𝑦𝑛 be random variables defined by (5.16). Then, the conditional̃︀𝑝(𝑥|𝑦1, . . . , 𝑦𝑛) is realized by a classifier-guided diffusion with backward SDE

𝑑𝑥𝑡 =

[︃
𝑚∑︁
𝑖=1

̃︀𝑝(𝑦= 𝑖|𝑥𝑡)
(︁
𝑓𝑖,𝑡(𝑥𝑡)− 𝑔2𝑖,𝑡

(︁
𝑠𝑖,𝑡(𝑥𝑡) +∇𝑥𝑡 log ̃︀𝑝(𝑦1, . . . , 𝑦𝑛|𝑥𝑡))︁)︁]︃ 𝑑𝑡

+

⎯⎸⎸⎷ 𝑚∑︁
𝑖=1

̃︀𝑝(𝑦= 𝑖|𝑥𝑡)𝑔2𝑖,𝑡 𝑑𝑤𝑡. (5.32)

The proof of Theorem 5.5.5 is provided in Appendix C.3.6.

5.5.4 Classifier Training (Diffusion Models)

We approximate the inferential distributions in equations (5.31) and (5.32) with a time-

conditioned classifier ̃︀𝑄𝜑(𝑦1, . . . , 𝑦𝑛|𝑥𝑡) with parameters 𝜑. Contrary to GFlowNets,

which employed a terminal and non-terminal state classifier, here we only need a single

150

time-dependent classifier. The classifier is trained with different objectives on terminal

and non-terminal states. The variables 𝑦1, . . . , 𝑦𝑛 are dependent given a state 𝑥𝑡 for

𝑡 ∈ [0, 𝑇), but are independent given the terminal state 𝑥𝑇 . Thus, when training on

terminal states we can exploit this independence. Furthermore, we generally found

it beneficial to initially train only on terminal states. The loss for the non-terminal

states depends on classifications of the terminal state of the associated trajectories,

thus by minimizing the classification error of terminal states first, we reduce noise in

the loss calculated for the non-terminal states later.

For a terminal state 𝑥0, the classifier ̃︀𝑄𝜑(𝑦1, . . . , 𝑦𝑛|𝑥𝑡) can be factorized as∏︀𝑛
𝑘=1

̃︀𝑄𝜑(𝑦𝑘|𝑥0). Hence we can train ̃︀𝑄 by minimizing the cross-entropy loss

ℒT(𝜑) = E
(̂︀𝑥0,̂︀𝑦1)∼̃︀𝑝(𝑥,𝑦1)

[︁
− log ̃︀𝑄𝜑(𝑦1 =̂︀𝑦1|𝑥0 =̂︀𝑥0)]︁ . (5.33)

Samples ̃︀𝑝(𝑥0, 𝑦1) can be generated according to the factorization ̃︀𝑝(𝑦1)̃︀𝑝(𝑥0|𝑦1). First,̂︀𝑦1 is sampled from ̃︀𝑝(𝑦1), which is uniform under our choice of ̃︀𝑝(𝑥0). Then, ̂︀𝑥0|(𝑦1 =̂︀𝑦1) is generated from the reverse SDE of base diffusion model 𝑝̂︀𝑦1(𝑥). Note that

equation (5.17) implies that all observations have the same conditional distribution

given 𝑥. Thus, ̃︀𝑄𝜑(𝑦1|𝑥0) is also a classifier for observations 𝑦2, . . . , 𝑦𝑛.

For a non-terminal state 𝑥𝑡 with 𝑡 ∈ (0, 𝑇], we must train ̃︀𝑄 to predict 𝑦1, . . . , 𝑦𝑛

jointly. For a non-terminal state ̂︀𝑥𝑡 and observations ̂︀𝑦1, . . . , ̂︀𝑦𝑛, the cross-entropy loss

is

ℓ(̂︀𝑥𝑡, ̂︀𝑦1, . . . , ̂︀𝑦𝑛;𝜑) = − log ̃︀𝑄𝜑(𝑦1 =̂︀𝑦1, . . . , 𝑦𝑛=̂︀𝑦𝑛|𝑥𝑡=̂︀𝑥𝑡). (5.34)

Tuples (̂︀𝑥𝑡, ̂︀𝑦1, . . . , ̂︀𝑦𝑛) are obtained as follows: 1) ̂︀𝑦1 ∼ ̃︀𝑝(𝑦1); 2) A trajectory 𝜏 =

{𝑥𝑡}𝑇𝑡=0 is sampled from the reverse SDE of diffusion model 𝑦1. At this point, we would

ideally sample ̂︀𝑦2, . . . , ̂︀𝑦𝑛 given ̂︀𝑥0 but this requires access to ̃︀𝑝(𝑦𝑘=̂︀𝑦𝑘|̂︀𝑥0). Instead, we

approximate this with 𝑤𝑖(̂︀𝑥;𝜑) = ̃︀𝑄𝜑(𝑦1 = 𝑖|𝑥0 =̂︀𝑥0) and marginalize over ̂︀𝑦2, . . . , ̂︀𝑦𝑛 to

obtain the cross-entropy loss

ℒ𝑁(𝜑, 𝜑) = E
(̂︀𝜏 ,̂︀𝑦1)
∼̃︀𝑝(𝜏,𝑦1)

⎡⎣ ∑︁
̂︀𝑥𝑡∈̂︀𝜏∖{̂︀𝑥0}

𝑚∑︁
̂︀𝑦2=1

· · ·
𝑚∑︁

̂︀𝑦𝑛=1

(︃
𝑛∏︁
𝑘=2

𝑤̂︀𝑦𝑘(̂︀𝑥0;𝜑)

)︃
ℓ(̂︀𝑥𝑡, ̂︀𝑦1, . . . , ̂︀𝑦𝑛;𝜑)

⎤⎦ . (5.35)

151

𝑝1 𝑝2 𝑝1 ⊗ 𝑝2 𝑝1◑ 𝑝2 𝑝1◑ 0.95 𝑝2

H
ig
h

Lo
w

𝑝1 𝑝2 𝑝3 ̃︀𝑝 (︀𝑥⃒⃒𝑦1=1
𝑦2=2

)︀ ̃︀𝑝(︂𝑥⃒⃒⃒⃒𝑦1=1
𝑦2=2
𝑦3=3

)︂ ̃︀𝑝 (︀𝑥⃒⃒𝑦1=2
𝑦2=2

)︀ ̃︀𝑝(︂𝑥⃒⃒⃒⃒𝑦1=2
𝑦2=2
𝑦3=2

)︂
Figure 5-3: Composed GFlowNets on 32 × 32 grid domain. Color indicates
cell probability, darker is higher. (Top) operations on two distributions. (Bottom)
operations on three distributions. The red circles indicate the high probability regions
of 𝑝1, 𝑝2, 𝑝3.

5.6 Experiments

5.6.1 2D Distributions via GFlowNet

We validate GFlowNet compositions obtained with our framework on 2D grid domain

[16]. The goal of this experiment is to validate our approach in a controlled setting,

where the ground-truth composite distributions can be evaluated directly.

In the 2D grid domain, the states are the cells of an 𝐻 ×𝐻 grid. The starting

state is the upper-left cell 𝑠0 = (0, 0). At each state, the allowed actions are: 1) move

right; 2) move down; 3) a stop action that indicates termination of the trajectory at

the current position. For this experiment, we first trained GFlowNets 𝑝𝑖(𝑥) ∝ 𝑅𝑖(𝑥)

with reward functions 𝑅𝑖(𝑥) > 0 defined on the grid, and then trained classifiers and

constructed GFlowNet compositions following 5.5.3.

Figure 5-3 (top row) shows the distributions obtained by composing two pre-trained

GFlowNets (top row; left). The harmonic mean 𝑝1 ⊗ 𝑝2, covers the regions that have

high probability under both 𝑝1 and 𝑝2 and excludes locations where either of the

distributions is low. 𝑝1◑ 𝑝2 resembles 𝑝1 but the relative masses of the modes of 𝑝1

are modulated by 𝑝2: regions with high 𝑝2 have lower probability under contrast. The

152

(a) Base at 𝛽 = 32 (b) Harmonic mean (c) Contrasts

(d) Base at 𝛽 = 96 (e) Harmonic mean

Figure 5-4: Reward distributions in the molecular generation domain. (a)
Base GFlowNets at 𝛽= 32: 𝑝SEH and 𝑝SA are trained with 𝑅SEH(𝑥)32 and 𝑅SA(𝑥)32.
(b) harmonic mean of 𝑝SEH and 𝑝SA, (c) contrasts. (d) base GFlowNets at 𝛽=96. (e)
harmonic mean. The contours indicate the level sets of the kernel density estimates in
the (𝑅SEH, 𝑅SA) plane.

153

parameterized contrast 𝑝1◑ 0.95 𝑝2 with 𝛼 = 0.05 magnifies the contrasting effect:

high 𝑝2(𝑥) implies very low (𝑝1◑ 0.95 𝑝2)(𝑥).

The bottom row of Figure 5-3 shows the operations on 3 distributions. The

conditional ̃︀𝑝(𝑥|𝑦1 =1, 𝑦2 =2) is concentrated on the points that have high likelihood

under both 𝑝1 and 𝑝2. Similarly, the value ̃︀𝑝(𝑥|𝑦1 = 1, 𝑦2 = 2, 𝑦3 = 3) is high if 𝑥 is

likely to be observed under all three distributions at the same time. The conditionals̃︀𝑝(𝑥|𝑦1 = 2, 𝑦2 = 2) and ̃︀𝑝(𝑥|𝑦1 = 2, 𝑦2 = 2, 𝑦3 = 2) highlight the points with high 𝑝2(𝑥)

but low 𝑝1(𝑥) and 𝑝3(𝑥). Conditioning on three labels results in a sharper distribution

compared to double-conditioning. Note that the operations can be thought of as

generalized set-theoretic operations (set intersection and set difference). We provide

quantitative results and further details in Appendix C.5.1. The classifier learning

curves are provided in Appendix 5.6.4.

5.6.2 Molecule Generation via GFlowNet

Next, we evaluate our method for GFlowNet composition on a large and highly struc-

tured data space, and asses the effect that composition operations have on resulting

data distributions in a practical setting. To that end, we conducted experiments with

GFlowNets trained for the molecular generation task proposed by Bengio et al. [16].

Domain. In the molecule generation task, the objects 𝑥 ∈ 𝒳 are molecular graphs.

The non-terminal states 𝑠 ∈ 𝒮 ∖ 𝒳 are incomplete molecular graphs. The transitions

from a given non-terminal state 𝑠 are of two types: 1) fragment addition 𝑠→ 𝑠′: new

molecular graph 𝑠′ is obtained by attaching a new fragment to the molecular graph

𝑠; 2) stop action 𝑠→ 𝑥: if 𝑠 ̸= 𝑠0, then the generation process can be terminated at

the molecular graph corresponding to the current state (note that new terminal state

𝑥 ∈ 𝒳 is different from 𝑠 ∈ 𝒮 ∖ 𝒳 , but both states correspond to the same molecular

graph).

Rewards. We trained GFlowNets using 3 reward functions: SEH, a reward com-

puted by an MPNN [76] that was trained by Bengio et al. [16] to estimate the binding

154

energy of a molecule to the soluble epoxide hydrolase protein; SA, an estimate of

synthetic accessibility [66] computed with tools from RDKit library [136]; QED, a

quantitative estimate of drug-likeness [22] which is also computed with RDKit. We

normalized all reward functions to the range [0, 1]. Higher values of SEH, SA, and QED

correspond to stronger binding, higher synthetic accessibility, and higher drug-likeness

respectively. Following Bengio et al. [16], we introduced the parameter 𝛽 which con-

trols the sharpness (temperature) of the target distribution: 𝑝(𝑥) ∝ 𝑅(𝑥)𝛽, increasing

𝛽 results in a distribution skewed towards high-reward objects. We experimented with

two 𝛽 values, 32 and 96 (Figure 5-4(a),5-4(d)).

Training and evaluation. After training the base GFlowNets with the reward

functions described above, we trained classifiers with Algorithm 2. The classifier was

parameterized as a graph neural network based on a graph transformer architecture

[268]. Further details of the classifier parameterization and training are provided in

Appendix C.5.2. Compared to the 2D grid domain (Section 5.6.1), we can not directly

evaluate the distributions obtained by our approach. Instead, we analyzed the samples

generated by the composed distributions. We sampled 5 000 molecules from each

composed distribution obtained with our approach as well as the base GFlowNets. We

evaluated the sample collections with the two following strategies. Reward evalua-

tion: we analyzed the distributions of rewards across the sample collections. The goal

is to see whether the composition of GFlowNets trained for different rewards leads

to noticeable changes in reward distribution. Distribution distance evaluation:

we used the samples to estimate the pairwise distances between the distributions.

Specifically, for a given pair of distributions represented by two collections of samples

𝒟𝐴 = {𝑥𝐴,𝑖}𝑛𝑖=1, 𝒟𝐵 = {𝑥𝐵,𝑖}𝑛𝑖=1 we computed the earth mover’s distance 𝑑(𝒟𝐴,𝒟𝐵)

with ground molecule distance given by 𝑑(𝑥, 𝑥′) = (max{𝑠(𝑥, 𝑥′), 10−3})−1 − 1, where

𝑠(𝑥, 𝑥′) ∈ [0, 1] is the Tanimoto similarity over Morgan fingerprints of molecules 𝑥 and

𝑥′.

155

Table 5.1: Reward distributions of composite
GFlowNets.

SEH low high

SA low high low high

QED low high low high low high low high

𝑝SEH 0 0 0 0 62 9 24 5
𝑝SA 0 0 73 4 0 0 18 5
𝑝QED 0 40 0 26 0 21 0 13

(a) 𝑦={SEH, SA} 1 0 16 2 6 3 54 18
(b) 𝑦={SEH,QED} 0 11 0 4 1 48 4 32
(c) 𝑦={SA,QED} 0 15 1 42 0 8 2 32
(d) 𝑦={SEH, SA,QED} 0 7 2 11 2 19 10 49

(e) 𝑦={SEH, SEH, SEH} 0 0 0 0 63 9 24 4
(f) 𝑦={SA, SA, SA} 0 0 74 5 0 0 17 4
(g) 𝑦={QED,QED,QED} 0 40 0 23 0 23 0 14

In each row, the numbers show the percentage of the
samples from the respective model that fall into one
of 8 bins according to rewards. The “low” and “high”
categories are decided by thresholding SEH: 0.5, SA:
0.6, QED: 0.25.

−0.5 0.0 0.5 1.0
−0.5

0.0

0.5

1.0

pSEH

pSA

pQED

(a)

(b)

(c)
(d)

(e)

(f)

(g)

Figure 5-5: 2D t-SNE
embeddings of three
base GFlowNets trained
with 𝑅SEH(𝑥)𝛽, 𝑅SA(𝑥)𝛽,
𝑅QED(𝑥)𝛽, at 𝛽 = 32 and
their compositions. The
t-SNE embeddings are
computed based on pairwise
earth mover’s distances
between the distributions.
Labels (a)-(g) match rows
in Table 5.1.

Results. Figure 5-4 shows reward distributions of base GFlowNets (trained with

SEH and SA rewards at 𝛽 ∈ {32, 96}) and their compositions. Base GFlowNet

distributions are concentrated on examples that score high in their respective rewards.

For each model, there is considerable variation in the reward that was not used for

training. The harmonic mean operation (Figures 5-4(b), 5-4(e)) results in distributions

that are concentrated on the samples scoring high in both rewards. The contrast

operation (Figure 5-4(c)) has the opposite effect: the distributions are skewed towards

the examples scoring high in only one of the original rewards. Note that the tails of

the contrast distributions are retreating from the area covered by the harmonic mean.

We show reward distribution statistics of three GFlowNets (trained with SEH,

SA, and QED at 𝛽 = 32) and their compositions in Table 5.1. Each row of the table

gives a breakdown (percentages) of the samples from a given model into one of 23 = 8

bins according to rewards. For all three base models, the majority of the samples

fall into the “high” category according to the respective reward, while the rewards

that were not used for training show variation. Conditioning on two different labels

(e.g. 𝑦={SEH,QED}) results in concentration on examples that score high in two

156

selected rewards, but not necessarily scoring high in the reward that was not selected.

The conditional 𝑦={SEH,QED, SA} shifts the focus to examples that have all three

properties.

Figure 5-5 shows 2D embeddings of the distributions appearing in Table 5.1. The

embeddings were computed with t-SNE based on the pairwise earth mover’s distances.

The configuration of the embeddings gives insight into the configuration of base models

and conditionals in the distribution space. We see that points corresponding to pairwise

conditionals lie in between the two base models selected for conditioning. Conditional

𝑦={SEH, SA,QED} appears to be near the centroid of the triangle (𝑝SEH, 𝑝SA, 𝑝QED)

and lies close the the pairwise conditionals. The distributions obtained by repeated

conditioning on the same label value (e.g. 𝑦={SEH, SEH, SEH}) are spread out to

the boundary and lie closer to the respective base distributions while being relatively

far from pairwise conditionals. We provide a complete summary of the distribution

distances in Table 5.2. The sample diversity statistics of base GFlowNets at different

values of 𝛽 are provided in Appendix C.6.1.

Table 5.2: Estimated pairwise earthmover’s distances between distributions shown in
Table 5.1.

SEH SA QED
SEH
SA

SEH
QED

SA
QED

SEH
SA

QED
SEH × 3 SA × 3 QED × 3

SEH 0 4.42 5.77 3.39 4.20 4.88 4.10 2.46 4.44 5.73
SA 4.42 0 5.88 3.26 5.15 4.59 4.20 4.39 2.55 5.89
QED 5.77 5.88 0 5.40 4.02 3.85 4.20 5.80 5.90 3.20
SEH,SA 3.39 3.26 5.40 0 4.25 4.19 3.68 3.39 3.30 5.39
SEH,QED 4.20 5.15 4.02 4.25 0 3.80 3.67 4.22 5.19 4.00
SA,QED 4.88 4.59 3.85 4.19 3.80 0 3.65 4.91 4.59 3.87
SEH,SA,QED 4.10 4.20 4.20 3.68 3.67 3.65 0 4.12 4.23 4.20
SEH × 3 2.46 4.39 5.80 3.39 4.22 4.91 4.12 0 4.43 5.73
SA × 3 4.44 2.55 5.90 3.30 5.19 4.59 4.23 4.43 0 5.90
QED × 3 5.73 5.89 3.20 5.39 4.00 3.87 4.20 5.73 5.90 0

5.6.3 Colored MNIST Generation via Diffusion Models

Finally, we empirically test our method for the composition of diffusion models on

image generation task.

157

𝑝1 𝑝2 𝑝3 ̃︀𝑝 (︀𝑥⃒⃒𝑦1=1
𝑦2=1

)︀ ̃︀𝑝 (︀𝑥⃒⃒𝑦1=2
𝑦2=2

)︀ ̃︀𝑝 (︀𝑥⃒⃒𝑦1=3
𝑦2=3

)︀

̃︀𝑝 (︀𝑥⃒⃒𝑦1=1
𝑦2=2

)︀ ̃︀𝑝 (︀𝑥⃒⃒𝑦1=1
𝑦2=3

)︀ ̃︀𝑝 (︀𝑥⃒⃒𝑦1=2
𝑦2=3

)︀ ̃︀𝑝(︂𝑥⃒⃒⃒⃒𝑦1=1
𝑦2=2
𝑦3=3

)︂ ̃︀𝑝(︂𝑥⃒⃒⃒⃒𝑦1=1
𝑦2=2
𝑦3=1

)︂ ̃︀𝑝(︂𝑥⃒⃒⃒⃒𝑦1=1
𝑦2=2
𝑦3=2

)︂
Figure 5-6: Composed diffusion models on colored MNIST. Samples from 3
pre-trained diffusion models and their various compositions.

In this experiment, we composed three diffusion models that are pre-trained to

generate colored MNIST digits [138]. Model 𝑝1 was trained to generate cyan digits

less than 4, 𝑝2 to generate cyan and beige digits less than 2, and 𝑝3 to generate cyan

and beige even digits less than 4. In essence, each model was trained to generate digits

with a specific property: 𝑝1 generates cyan digits, 𝑝2 generates digits less than 2, and

𝑝3 generates even digits.

We built the composition iteratively by factorizing the posterior as ̃︀𝑝(𝑥|𝑦1, 𝑦2, 𝑦3) ∝̃︀𝑝(𝑥)̃︀𝑝(𝑦1, 𝑦2|𝑥)̃︀𝑝(𝑦3|𝑥, 𝑦1, 𝑦2). To this end, we first trained a classifier ̃︀𝑄(𝑦1, 𝑦2|𝑥𝑡) on

trajectories sampled from the base models. This allows us to generate samples from̃︀𝑝(𝑥|𝑦1, 𝑦2). We then trained an additional classifier ̃︀𝑄(𝑦3|𝑥𝑡, 𝑦1, 𝑦2) on trajectories from

compositions defined by (𝑦1, 𝑦2) to allow us to sample from ̃︀𝑝(𝑥|𝑦1, 𝑦2, 𝑦3). Additional

details can be found in Appendix C.5.3.

Figure 5-6 shows samples from the pre-trained models and from selected composi-

tions. The negating effect of not conditioning on observations is clearly visible in the

compositions using two variables. For example, ̃︀𝑝(𝑥|𝑦1 =1, 𝑦2 =1) only generates cyan

3 digits. Because there we do not condition on 𝑝2 or 𝑝3, the composition excludes

digits that have high probability under 𝑝2 or 𝑝3, i.e. those that are less than 2 or

even. We can make a similar analysis of ̃︀𝑝(𝑥|𝑦1 =1, 𝑦2 =3). Cyan even digits have high

158

density under both 𝑝1 and 𝑝3, but because 𝑝2 is not conditioned on, the composition

excludes digits less than two (i.e. cyan 0’s). Finally, ̃︀𝑝(𝑥|𝑦1 =1, 𝑦2 =2, 𝑦3 =3) generates

only cyan 0 digits, on which all base models have high density.

5.6.4 Classifier Learning Curves and Training Time

We empirically evaluated classifier training time and learning curves. The results are

shown in Figures 5-7, 5-8, 5-9 and Tables 5.3, 5.4.

Figures 5-7, 5-8, 5-9 show the cross-entropy loss of the classifier for terminal (5.25)

and non-terminal states (5.27) as a function of the number of training steps for the

GFlowNet 2D grid domain, the molecular generation domain, and the Colored MNIST

digits domain respectively. They show that the loss drops quickly but remains above

0. Figure 5-7 further shows the distances between the learned compositions and the

ground truth distributions as a function of the number of training steps of the classifier.

For all compositions, as the classifier training progresses, the distance to the ground

truth distribution decreases. Compared to the distance at initialization we observe

almost an order of magnitude distance reduction by the end of the training.

The runtime of classifier training is shown in Tables 5.3 and 5.4. We report the total

runtime, as well as separate measurements for the time spent sampling trajectories

and training the classifier. The classifier training time is comparable to the base

generative model training time. However, most of the classifier training time (more

than 70%, or even 90%) was spent on sampling trajectories from base generative

models. Our implementation of the training could be improved in this regard, e.g. by

sampling a smaller set of trajectories once and re-using trajectories for training and

by reducing the number of training steps (the loss curves in Figures 5-7, 5-8, 5-9 show

that classification losses plateau quickly).

159

0 2500 5000 7500 10000 12500 15000

Steps
0.500
0.525
0.550
0.575
0.600
0.625
0.650
0.675
0.700
0.725

Te
rm

ina
lst

ate
los

s

Terminal state loss
Non-terminal state loss

40.00
41.56
43.11
44.67
46.22
47.78
49.33
50.89
52.44
54.00

No
n-t

erm
ina

lst
ate

los
s

0 2500 5000 7500 10000 12500 15000

Steps
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Di
str

ibu
tio

nd
ista

nce
(L

1)

L1
(1
2
p1 +

1
2
p2,GT(12p1 + 1

2
p2)

)

L1
(
p1⊗ p2,GT(p1⊗ p2)

)

L1
(
p1◐ p2,GT(p1◐ p2)

)

L1
(
p1◐0.95 p2,GT(p1◐0.95 p2)

)

Figure 5-7: Training curves of the classifier ̃︀𝑄𝜑(𝑦1, 𝑦2|·) in GFlowNet 2D grid domain.
The experimental setup corresponds to Section 5.6.1 and Figure 5-3 (top row). Top:
Terminal state loss and non-terminal state loss (as defined in Algorithm 2) as functions
of the number of training steps. Bottom: 𝐿1 distance between learned distributions
(compositions obtained through classifier-based mixture and guidance) and ground-
truth composition distributions as the function of the number of training steps.
𝐿1(𝑝, 𝑞) =

∑︀
𝑥∈𝒳 |𝑝(𝑥)− 𝑞(𝑥)|.

0 2500 5000 7500 10000 12500 15000

Steps
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
rm

ina
lst

ate
los

s

Terminal state loss
Non-terminal state loss

0.00

5.62

11.25

16.88

22.50

28.12

33.75

39.38

45.00

No
n-t

erm
ina

lst
ate

los
s

Figure 5-8: Training curves of the classifier ̃︀𝑄𝜑(𝑦1, 𝑦2|·) in GFlowNet molecule gener-
ation domain. The experimental setup corresponds to Section 5.6.2 and Figure 5-4
(a-c). The curves show terminal state loss and non-terminal state loss (as defined in
Algorithm 2) as functions of the number of training steps.

160

0 25 50 75 100 125 150 175 200

Steps
0.000
0.125
0.250
0.375
0.500
0.625
0.750
0.875
1.000
1.125
1.250

Te
rm

ina
lst

ate
los

s
0.00
0.45
0.90
1.35
1.80
2.25
2.70
3.15
3.60
4.05
4.50

No
n-t

erm
ina

lst
ate

los
s

Terminal state loss
Non-terminal state loss

Figure 5-9: Training curves of the classifier ̃︀𝑄𝜑(𝑦1, 𝑦2|·) in diffusion MNIST image
generation domain. The experimental setup corresponds to Section C.6.2 and Figure
C-1. The curves show terminal state loss and non-terminal state loss (as defined
in equations (5.33), (5.35)) as functions of the number of training steps. The non-
terminal loss optimization begins after the first 100 training steps (shown by the black
dashed line).

Table 5.3: Summary of base GFlowNet and classifier training time in molecule
generation domain. The experimental setup corresponds to Section 5.6.2 & Figure 5-4
(a-c). All models were trained with a single GeForce RTX 2080 Ti GPU.

Base GFlowNet training steps 20 000
Base GFlowNet batch size 64
Base GFlowNet training elapsed real time 6h 47m 11s

Classifier training steps 15 000
Classifier batch size 8 trajectories per base model

(all states used)
Classifier training total elapsed real time 9h 2m 19s
Classifier training data generation time 6h 35m 58s (73%)

Table 5.4: Summary of base diffusion and classifier training time in MNIST image
generation domain. The experimental setup corresponds to Section C.6.2 & Figure
C-1 in the main paper. All models were trained with a single Tesla V100 GPU.

Base diffusion training steps 200
Base diffusion batch size 32
Base diffusion training elapsed real time 10m 6s

Classifier training steps 200
Classifier batch size 128 trajectories per base model

(35 time-steps per trajectory)
Classifier training total elapsed real time 30m 12s
Classifier training data generation time 29m 22s (97%)

161

162

Chapter 6

Discussion

Deep probabilistic models are a core component of modern artificial intelligence

systems. This thesis contributes to the methodology of training and inference in

deep probabilistic models using auxiliary models trained for separate tasks. The

research presented in this thesis focused on principled methods with guarantees on the

optimality of target distribution configurations and sampling from target distributions.

Pairwise Discriminators for Adversarial Training. In Chapter 3, we introduced

PairGAN, a formulation of adversarial training where the training dynamics does

not suffer from the instability of the alignment. Our theoretical results constitute

first steps in understanding convergence guarantees for PairGAN. Interestingly, in

our setup, one can formalize the balance of power between the discriminator and

the generator with the notion of sufficient discriminators, which is not present in the

standard formulation of GANs. Throughout our analysis, PairGAN enjoys flexibility

which permits the use of different loss functions and model architectures.

Future Work. Directions for future work include further theoretical understanding

of convergence guarantees and properties of sufficient discriminators. More extensive

experiments with different design choices are necessary to understand the general

improvements that PairGAN can bring. While the PairGAN formulation addresses

a particular issue contributing to the instability of adversarial training, the overall

163

problem of training instability is not fully resolved. In particular the stability of

the distribution alignment is only relevant when the generator is close to the target

distribution. In practice the entire learning trajectory of the generator might lie

far from the target demonstrating an unstable learning behavior not addressed by

PairGAN. Further research is required for detailed characterization and mitigation of

other instability issues arising in practice.

Adversarial Support Alignment. In Chapter 4, we studied the problem of aligning

the supports of distributions. We formalized the theoretical connections between

support alignment and existing notions of alignment. We proposed a practical method

that uses a signal from a Jensen-Shannon discriminator to guide distributions towards

support alignment. We demonstrated the effectiveness of the approach in domain

adaptation under label distribution shift.

Future Work. We believe that our methodology opens possibilities for the design of

more nuanced and structured alignment constraints, suitable for various use cases. One

natural extension is support containment, achievable with only one term in (4.1). This

approach is fitting for partial domain adaptation, where some source domain classes

do not appear in the target domain. Another interesting direction is unsupervised

domain transfer, where support alignment is more desired than existing distribution

alignment methods due to mode imbalance [23]. Furthermore, support alignment

can be used as the objective for generative modeling. Potential use cases includes

training a generative model by aligning the model support with the data support,

thus ensuring that the model can generate samples similar to data examples without

reproducing frequency biases (i.e. relative probabilities of various regions) present in

the training data. Related to this idea is the problem of diverse sampling (see e.g.

[49]), which can be formalized as uniformly covering the volume of the fixed support.

Support alignment lifts the restrictive constraints of strict distribution alignment.

Naturally, this relaxation expands the set of valid solutions, as there are many ways

to modify distribution densities while keeping the supports aligned, Optimizing for

164

support alignment in isolation is an underspecifed problem. The algorithm based on

support alignment can choose one of the valid support alignment solutions. Clearly,

some of the support alignment solutions are less desirable than others. For instance,

in the case of undsupervised domain adaptation, support alinged solutions include

the configuration where the marginal supports of source and target embeddings are

aligned, but individual class supports of target distribution are matched with incorrect

class supports of source distribution. To design algorithms that avoid such pathological

solutions, one needs to introduce additional explicit regularization or implicit inductive

biases in the model and learning algorithm. We leave the research on the exploration

of such regularization strategies for future work.

Compositional Sculpting of Iterative Generative Processes. In Chapter 5,

we introduced Compositional Sculpting, a general approach for composing iterative

generative models. Compositions are defined through “observations”, which enable us

to emphasize or de-emphasize the density of the composition in regions where specific

base models have high density. We highlighted two binary compositions, harmonic

mean and contrast, which are analogous to the product and negation operations defined

on EBMs. A crucial feature of the compositions we have introduced is that thet can be

realized via guided diffusion or GFlowNet generative policies. By extending classifier

guidance we are able to leverage the generative capabilities of the base models to

produce samples from the composition. Through empirical experiments, we validated

our approach for composing diffusion models and GFlowNets on toy domains, molecular

generation, and image generation.

Future Work. Our work focused on principled approaches with guarantees on

sampling from distributions defined through algebraic composition operations. On the

methodological front, the exploration of composition and coordination mechanisms

built on alternative principles is an exciting avenue for future research. We suspect

that the design of novel supervision or model selection signals for learning coordination

mechanisms would play a vital role in this research direction. Another path to

165

improved coordination techniques lies in the development of new model families that

can be efficiently composed and adapted for new tasks. We argue that the landscape

of the models is not extensively explored as the tradeoffs between model representation

power and composition ability are poorly understood. For example, energy models are

relatively harder to train but easy to compose. In contrast, diffusion models enable

stable training but can not be composed by simple manipulations on learned score

functions without losing guarantees.

On the application front, developing methods for collaboration between multiple

models or human-AI collaboration is a promising direction. In engineering, sciences,

and arts, complex designs involve the use of several different types of expertise

governed by different interacting components. For example, aircraft design involves

the collaboration of various specialists: structural engineers, material engineers,

aerodynamicists, avionics engineers, safety engineers, and others, each primarily

focused on respective specific aspects of design. Naturally, arriving at the final design

requires an extensive exploration of complex trade-offs between constraints associated

with different expertise domains. Generative models only recently reached capabilities

enabling the generation of complex objects in domains such as

• generation of coherent music from different instruments [162];

• multi-objective engineering design [75, 164];

• molecule generation [16, 48, 112];

• generation of biomolecules [29, 36, 267] and large geometric arrangements of

molecules [257];

• generative multi-task control [4, 41, 109];

• multi-agent motion prediction and control [56, 110].

We believe that research on cooperative generative design will pave the way for a new

generation of AI-assisted design systems that enhance creativity and efficiency.

166

Bibliography

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya,

Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman,

Shyamal Anadkat, and others (OpenAI team). Gpt-4 technical report. arXiv

preprint arXiv:2303.08774, 2023.

[2] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes,

Byron David, Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol

Hausman, Alexander Herzog, Daniel Ho, Jasmine Hsu, Julian Ibarz, Brian Ichter,

Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally Jesmonth,

Nikhil Jayant Joshi, Ryan C. Julian, Dmitry Kalashnikov, Yuheng Kuang,

Kuang-Huei Lee, Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter

Pastor, Jornell Quiambao, Kanishka Rao, Jarek Rettinghouse, Diego M Reyes,

Pierre Sermanet, Nicolas Sievers, Clayton Tan, Alexander Toshev, Vincent

Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Mengyuan Yan, and Andy

Zeng. Do as i can, not as i say: Grounding language in robotic affordances.

In Karen Liu, Dana Kulic, and Jeff Ichnowski, editors, Proceedings of The 6th

Conference on Robot Learning, volume 205 of Proceedings of Machine Learning

Research, pages 287–318. PMLR, 2023.

[3] Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, and Mario

Marchand. Domain-adversarial neural networks. arXiv preprint arXiv:1412.4446,

2014.

[4] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenenbaum, Tommi S. Jaakkola,

and Pulkit Agrawal. Is conditional generative modeling all you need for decision

167

making? In The Eleventh International Conference on Learning Representations,

2023. URL https://openreview.net/forum?id=sP1fo2K9DFG.

[5] Michael S. Albergo, Nicholas M. Boffi, and Eric Vanden-Eijnden. Stochastic

interpolants: A unifying framework for flows and diffusions, 2023. URL https:

//arxiv.org/abs/2303.08797.

[6] Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows

with stochastic interpolants. In The Eleventh International Conference on

Learning Representations, 2023. URL https://arxiv.org/abs/2209.15571.

[7] Brian D.O. Anderson. Reverse-time diffusion equation models. Stochastic

Processes and their Applications, 12(3):313–326, 1982.

[8] Martin Arjovsky and Léon Bottou. Towards principled methods for train-

ing generative adversarial networks. In International Conference on Learning

Representations, 2017.

[9] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative

adversarial networks. In International conference on machine learning, pages

214–223. PMLR, 2017.

[10] Yogesh Balaji, Rama Chellappa, and Soheil Feizi. Robust optimal transport

with applications in generative modeling and domain adaptation. Advances in

Neural Information Processing Systems Foundation (NeurIPS), 2020.

[11] Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel. Multidiffusion: Fusing

diffusion paths for controlled image generation. In International Conference on

Machine Learning, pages 1737–1752. PMLR, 2023.

[12] Shai Ben-David, John Blitzer, Koby Crammer, Fernando Pereira, et al. Analysis

of representations for domain adaptation. Advances in neural information

processing systems, 19:137, 2007.

168

https://openreview.net/forum?id=sP1fo2K9DFG
https://arxiv.org/abs/2303.08797
https://arxiv.org/abs/2303.08797
https://arxiv.org/abs/2209.15571

[13] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira,

and Jennifer Wortman Vaughan. A theory of learning from different domains.

Machine learning, 79(1):151–175, 2010.

[14] Heli Ben-Hamu, Omri Puny, Itai Gat, Brian Karrer, Uriel Singer, and Yaron

Lipman. D-flow: Differentiating through flows for controlled generation. arXiv

preprint arXiv:2402.14017, 2024.

[15] BIG bench authors. Beyond the imitation game: Quantifying and extrapolating

the capabilities of language models. Transactions on Machine Learning Research,

2023. ISSN 2835-8856. URL https://openreview.net/forum?id=uyTL5Bvosj.

[16] Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua

Bengio. Flow network based generative models for non-iterative diverse candidate

generation. Advances in Neural Information Processing Systems, 34:27381–27394,

2021.

[17] Yoshua Bengio and Samy Bengio. Modeling high-dimensional discrete data

with multi-layer neural networks. Advances in Neural Information Processing

Systems, 12, 1999.

[18] Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic

language model. Advances in neural information processing systems, 13, 2000.

[19] Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J. Hu, Mo Tiwari, and

Emmanuel Bengio. Gflownet foundations. Journal of Machine Learning Research,

24(210):1–55, 2023. URL http://jmlr.org/papers/v24/22-0364.html.

[20] Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization,

volume 6. Athena Scientific Belmont, MA, 1997.

[21] James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li,

Long Ouyang, Juntang Zhuang, Joyce Lee, Yufei Guo, et al. Improving im-

age generation with better captions. Computer Science. https://cdn. openai.

com/papers/dall-e-3. pdf, 2:3, 2023.

169

https://openreview.net/forum?id=uyTL5Bvosj
http://jmlr.org/papers/v24/22-0364.html

[22] G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and

Andrew L Hopkins. Quantifying the chemical beauty of drugs. Nature chemistry,

4(2):90–98, 2012.

[23] Mikolaj Binkowski, Devon Hjelm, and Aaron Courville. Batch weight for domain

adaptation with mass shift. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 1844–1853, 2019.

[24] Christopher M Bishop. Pattern recognition and machine learning. Springer New

York, NY, 2006.

[25] Mikolaj Bińkowski, Dougal J. Sutherland, Michael Arbel, and Arthur Gret-

ton. Demystifying MMD GANs. In International Conference on Learning

Representations, 2018. URL https://openreview.net/forum?id=r1lUOzWCW.

[26] Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Train-

ing diffusion models with reinforcement learning. In The Twelfth International

Conference on Learning Representations, 2024. URL https://openreview.net/

forum?id=YCWjhGrJFD.

[27] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora,

Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma

Brunskill, Erik Brynjolfsson, S. Buch, Dallas Card, Rodrigo Castellon, Niladri S.

Chatterji, Annie S. Chen, Kathleen A. Creel, Jared Davis, Dora Demszky, Chris

Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy,

Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren E. Gille-

spie, Karan Goel, Noah D. Goodman, Shelby Grossman, Neel Guha, Tatsunori

Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu,

Jing Huang, Thomas F. Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Sid-

dharth Karamcheti, Geoff Keeling, Fereshte Khani, O. Khattab, Pang Wei Koh,

Mark S. Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Lad-

hak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen

Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric

170

https://openreview.net/forum?id=r1lUOzWCW
https://openreview.net/forum?id=YCWjhGrJFD
https://openreview.net/forum?id=YCWjhGrJFD

Mitchell, Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan,

Benjamin Newman, Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, J. F.

Nyarko, Giray Ogut, Laurel J. Orr, Isabel Papadimitriou, Joon Sung Park,

Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Robert

Reich, Hongyu Ren, Frieda Rong, Yusuf H. Roohani, Camilo Ruiz, Jack Ryan,

Christopher R’e, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih,

Krishna Parasuram Srinivasan, Alex Tamkin, Rohan Taori, Armin W. Thomas,

Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai

Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei A. Zaharia,

Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn

Zhou, and Percy Liang. On the opportunities and risks of foundation models.

ArXiv, abs/2108.07258, 2021.

[28] Nicolas Bonneel and David Coeurjolly. Spot: sliced partial optimal transport.

ACM Transactions on Graphics (TOG), 38(4):1–13, 2019.

[29] Joey Bose, Tara Akhound-Sadegh, Guillaume Huguet, Kilian FATRAS, Jarrid

Rector-Brooks, Cheng-Hao Liu, Andrei Cristian Nica, Maksym Korablyov,

Michael M. Bronstein, and Alexander Tong. SE(3)-stochastic flow matching

for protein backbone generation. In The Twelfth International Conference on

Learning Representations, 2024. URL https://openreview.net/forum?id=

kJFIH23hXb.

[30] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for

large-scale machine learning. SIAM review, 60(2):223–311, 2018.

[31] Damiano Brigo. The general mixture-diffusion sde and its relationship with

an uncertain-volatility option model with volatility-asset decorrelation. ArXiv,

abs/0812.4052, 2008.

[32] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis,

Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alexander Herzog,

Jasmine Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Tomas Jackson, Sally

171

https://openreview.net/forum?id=kJFIH23hXb
https://openreview.net/forum?id=kJFIH23hXb

Jesmonth, Nikhil J. Joshi, Ryan C. Julian, Dmitry Kalashnikov, Yuheng Kuang,

Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deeksha

Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta,

Emily Perez, Karl Pertsch, Jornell Quiambao, Kanishka Rao, Michael S. Ryoo,

Grecia Salazar, Pannag R. Sanketi, Kevin Sayed, Jaspiar Singh, Sumedh Anand

Sontakke, Austin Stone, Clayton Tan, Huong Tran, Vincent Vanhoucke, Steve

Vega, Quan Ho Vuong, F. Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and

Brianna Zitkovich. Rt-1: Robotics transformer for real-world control at scale.

ArXiv, abs/2212.06817, 2022.

[33] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, et al. Language models are few-shot learners. Advances in neural

information processing systems, 33:1877–1901, 2020.

[34] Eric Budish, Yeon-Koo Che, Fuhito Kojima, and Paul Milgrom. Implementing

random assignments: A generalization of the birkhoff-von neumann theorem. In

2009 Cowles Summer Conference, 2009.

[35] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted

autoencoders. arXiv preprint arXiv:1509.00519, 2015.

[36] Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi

Jaakkola. Generative flows on discrete state-spaces: Enabling multimodal flows

with applications to protein co-design. arXiv preprint arXiv:2402.04997, 2024.

[37] Raghavendra Chalapathy, Aditya Krishna Menon, and Sanjay Chawla. Robust,

deep and inductive anomaly detection. In Joint European Conference on Machine

Learning and Knowledge Discovery in Databases, pages 36–51. Springer, 2017.

[38] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud.

Neural ordinary differential equations. Advances in neural information processing

systems, 31, 2018.

172

[39] Xi Chen, Nikhil Mishra, Mostafa Rohaninejad, and Pieter Abbeel. Pixelsnail:

An improved autoregressive generative model. In International conference on

machine learning, pages 864–872. PMLR, 2018.

[40] Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel

Ilharco, Cade Gordon, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev.

Reproducible scaling laws for contrastive language-image learning. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 2818–2829, 2023.

[41] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin

Burchfiel, and Shuran Song. Diffusion policy: Visuomotor policy learning via

action diffusion. In Proceedings of Robotics: Science and Systems (RSS), 2023.

[42] Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, and Sungroh

Yoon. Ilvr: Conditioning method for denoising diffusion probabilistic models.

In Proceedings of the IEEE/CVF International Conference on Computer Vision

(ICCV), pages 14367–14376, October 2021.

[43] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav

Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton,

Sebastian Gehrmann, et al. Palm: Scaling language modeling with pathways.

ArXiv, abs/2204.02311, 2022.

[44] Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving

diffusion models for inverse problems using manifold constraints. Advances in

Neural Information Processing Systems, 35:25683–25696, 2022.

[45] Kevin Clark, Paul Vicol, Kevin Swersky, and David J. Fleet. Directly fine-

tuning diffusion models on differentiable rewards. In The Twelfth International

Conference on Learning Representations, 2024. URL https://openreview.net/

forum?id=1vmSEVL19f.

173

https://openreview.net/forum?id=1vmSEVL19f
https://openreview.net/forum?id=1vmSEVL19f

[46] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks

in unsupervised feature learning. In Proceedings of the fourteenth international

conference on artificial intelligence and statistics, pages 215–223. JMLR Work-

shop and Conference Proceedings, 2011.

[47] Colin Conwell and Tomer Ullman. Testing relational understanding in text-

guided image generation. ArXiv, abs/2208.00005, 2022.

[48] Gabriele Corso, Bowen Jing, Regina Barzilay, Tommi Jaakkola, et al. Diffdock:

Diffusion steps, twists, and turns for molecular docking. In International

Conference on Learning Representations (ICLR 2023), 2023.

[49] Gabriele Corso, Yilun Xu, Valentin De Bortoli, Regina Barzilay, and Tommi S.

Jaakkola. Particle guidance: non-i.i.d. diverse sampling with diffusion models.

In The Twelfth International Conference on Learning Representations, 2024.

URL https://openreview.net/forum?id=KqbCvIFBY7.

[50] Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and Matthieu Cord.

Diffedit: Diffusion-based semantic image editing with mask guidance. In The

Eleventh International Conference on Learning Representations, 2023. URL

https://openreview.net/forum?id=3lge0p5o-M-.

[51] Lucas Deecke, Robert Vandermeulen, Lukas Ruff, Stephan Mandt, and Marius

Kloft. Image anomaly detection with generative adversarial networks. In Joint

european conference on machine learning and knowledge discovery in databases,

pages 3–17. Springer, 2018.

[52] Ishan Deshpande, Ziyu Zhang, and Alexander G Schwing. Generative modeling

using the sliced wasserstein distance. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 3483–3491, 2018.

[53] Ishan Deshpande, Yuan-Ting Hu, Ruoyu Sun, Ayis Pyrros, Nasir Siddiqui, Sanmi

Koyejo, Zhizhen Zhao, David Forsyth, and Alexander G Schwing. Max-sliced

wasserstein distance and its use for gans. In Proceedings of the IEEE/CVF

174

https://openreview.net/forum?id=KqbCvIFBY7
https://openreview.net/forum?id=3lge0p5o-M-

Conference on Computer Vision and Pattern Recognition, pages 10648–10656,

2019.

[54] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. ArXiv,

abs/1810.04805, 2018.

[55] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image

synthesis. Advances in Neural Information Processing Systems, 34:8780–8794,

2021.

[56] Christopher Diehl, Tobias Klosek, Martin Krueger, Nils Murzyn, Timo Osterburg,

and Torsten Bertram. Energy-based potential games for joint motion forecasting

and control. In 7th Annual Conference on Robot Learning, 2023. URL https:

//openreview.net/forum?id=Eyb4e3GBuuR.

[57] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent

components estimation. arXiv preprint arXiv:1410.8516, 2014.

[58] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation

using real nvp. arXiv preprint arXiv:1605.08803, 2016.

[59] Danny Driess, F. Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery,

Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan Ho Vuong, Tianhe Yu,

Wenlong Huang, Yevgen Chebotar, Pierre Sermanet, Daniel Duckworth, Sergey

Levine, Vincent Vanhoucke, Karol Hausman, Marc Toussaint, Klaus Greff, Andy

Zeng, Igor Mordatch, and Peter R. Florence. Palm-e: An embodied multimodal

language model. ArXiv, abs/2303.03378, 2023.

[60] Yilun Du and Leslie Pack Kaelbling. Position: Compositional generative mod-

eling: A single model is not all you need. In Forty-first International Confer-

ence on Machine Learning, 2024. URL https://openreview.net/forum?id=

SoNexFx8qz.

175

https://openreview.net/forum?id=Eyb4e3GBuuR
https://openreview.net/forum?id=Eyb4e3GBuuR
https://openreview.net/forum?id=SoNexFx8qz
https://openreview.net/forum?id=SoNexFx8qz

[61] Yilun Du and Igor Mordatch. Implicit generation and modeling with energy-

based models. Advances in Neural Information Processing Systems, 32, 2019.

[62] Yilun Du, Shuang Li, and Igor Mordatch. Compositional visual generation with

energy based models. Advances in Neural Information Processing Systems, 33:

6637–6647, 2020.

[63] Yilun Du, Shuang Li, Yash Sharma, Josh Tenenbaum, and Igor Mordatch.

Unsupervised learning of compositional energy concepts. Advances in Neural

Information Processing Systems, 34:15608–15620, 2021.

[64] Yilun Du, Conor Durkan, Robin Strudel, Joshua B Tenenbaum, Sander Diele-

man, Rob Fergus, Jascha Sohl-Dickstein, Arnaud Doucet, and Will Sussman

Grathwohl. Reduce, reuse, recycle: Compositional generation with energy-based

diffusion models and mcmc. In International Conference on Machine Learning,

pages 8489–8510. PMLR, 2023.

[65] Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth.

Hybrid monte carlo. Physics letters B, 195(2):216–222, 1987.

[66] Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score

of drug-like molecules based on molecular complexity and fragment contributions.

Journal of cheminformatics, 1:1–11, 2009.

[67] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for

high-resolution image synthesis. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pages 12873–12883, 2021.

[68] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller,

Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al.

Scaling rectified flow transformers for high-resolution image synthesis. arXiv

preprint arXiv:2403.03206, 2024.

[69] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set generation network

176

for 3d object reconstruction from a single image. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 605–613, 2017.

[70] Farzan Farnia and Asuman Ozdaglar. Do gans always have nash equilibria? In

International Conference on Machine Learning, pages 3029–3039. PMLR, 2020.

[71] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit Haim Bermano,

Gal Chechik, and Daniel Cohen-or. An image is worth one word: Personalizing

text-to-image generation using textual inversion. In The Eleventh International

Conference on Learning Representations, 2023. URL https://openreview.net/

forum?id=NAQvF08TcyG.

[72] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by

backpropagation. In International conference on machine learning, pages 1180–

1189. PMLR, 2015.

[73] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo

Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky. Domain-

adversarial training of neural networks. The journal of machine learning research,

17(1):2096–2030, 2016.

[74] Aude Genevay, Gabriel Peyré, and Marco Cuturi. Learning generative models

with sinkhorn divergences. In International Conference on Artificial Intelligence

and Statistics, pages 1608–1617. PMLR, 2018.

[75] Giorgio Giannone, Akash Srivastava, Ole Winther, and Faez Ahmed. Aligning

optimization trajectories with diffusion models for constrained design generation.

Advances in Neural Information Processing Systems, 36, 2024.

[76] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E

Dahl. Neural message passing for quantum chemistry. In International conference

on machine learning, pages 1263–1272. PMLR, 2017.

[77] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016. http://www.deeplearningbook.org.

177

https://openreview.net/forum?id=NAQvF08TcyG
https://openreview.net/forum?id=NAQvF08TcyG
http://www.deeplearningbook.org

[78] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial

networks. arXiv preprint arXiv:1406.2661, 2014.

[79] Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, and David Duvenaud.

Scalable reversible generative models with free-form continuous dynamics. In

International Conference on Learning Representations, 2019. URL https://

openreview.net/forum?id=rJxgknCcK7.

[80] Alex Graves. Generating sequences with recurrent neural networks. arXiv

preprint arXiv:1308.0850, 2013.

[81] Karol Gregor and Yann LeCun. Learning representations by maximizing com-

pression. arXiv preprint arXiv:1108.1169, 2011.

[82] Karol Gregor, Ivo Danihelka, Andriy Mnih, Charles Blundell, and Daan Wierstra.

Deep autoregressive networks. In International Conference on Machine Learning,

pages 1242–1250. PMLR, 2014.

[83] Ulf Grenander and Michael I Miller. Representations of knowledge in complex

systems. Journal of the Royal Statistical Society: Series B (Methodological), 56

(4):549–581, 1994.

[84] Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, and

Alex J Smola. A kernel method for the two-sample-problem. In Advances in

neural information processing systems, pages 513–520, 2007.

[85] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf,

and Alexander Smola. A kernel two-sample test. Journal of Machine Learning

Research, 13(Mar):723–773, 2012.

[86] Aditya Grover and Stefano Ermon. Boosted generative models. In Proceedings

of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

178

https://openreview.net/forum?id=rJxgknCcK7
https://openreview.net/forum?id=rJxgknCcK7

[87] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and

Aaron Courville. Improved training of wasserstein gans. In Proceedings of the

31st International Conference on Neural Information Processing Systems, pages

5769–5779, 2017.

[88] William Harvey, Saeid Naderiparizi, and Frank Wood. Conditional image

generation by conditioning variational auto-encoders. In International Conference

on Learning Representations, 2022. URL https://openreview.net/forum?id=

7MV6uLzOChW.

[89] W Keith Hastings. Monte carlo sampling methods using markov chains and

their applications. 1970.

[90] Elad Hazan et al. Introduction to online convex optimization. Foundations and

Trends® in Optimization, 2(3-4):157–325, 2016.

[91] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), June 2016.

[92] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[93] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and

Daniel Cohen-or. Prompt-to-prompt image editing with cross-attention control.

In The Eleventh International Conference on Learning Representations, 2023.

URL https://openreview.net/forum?id=_CDixzkzeyb.

[94] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and

Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a

local nash equilibrium. In Advances in Neural Information Processing Systems,

pages 6626–6637, 2017.

179

https://openreview.net/forum?id=7MV6uLzOChW
https://openreview.net/forum?id=7MV6uLzOChW
https://openreview.net/forum?id=_CDixzkzeyb

[95] Geoffrey Hinton, Simon Osindero, Max Welling, and Yee-Whye Teh. Unsu-

pervised discovery of nonlinear structure using contrastive backpropagation.

Cognitive science, 30(4):725–731, 2006.

[96] Geoffrey E Hinton. Products of experts. In Ninth International Conference on

Artificial Neural Networks, volume 1, 1999.

[97] Geoffrey E Hinton. Training products of experts by minimizing contrastive

divergence. Neural computation, 14(8):1771–1800, 2002.

[98] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS

2021 Workshop on Deep Generative Models and Downstream Applications, 2021.

URL https://openreview.net/forum?id=qw8AKxfYbI.

[99] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic

models. Advances in Neural Information Processing Systems, 33:6840–6851,

2020.

[100] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad

Norouzi, and David J Fleet. Video diffusion models. Advances in Neural

Information Processing Systems, 35:8633–8646, 2022.

[101] Quan Hoang, Tu Dinh Nguyen, Trung Le, and Dinh Phung. Mgan: Training

generative adversarial nets with multiple generators. In International conference

on learning representations, 2018.

[102] Heiko Hoffmann. Kernel pca for novelty detection. Pattern recognition, 40(3):

863–874, 2007.

[103] Ziqi Huang, Kelvin C.K. Chan, Yuming Jiang, and Ziwei Liu. Collaborative

diffusion for multi-modal face generation and editing. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

pages 6080–6090, June 2023.

180

https://openreview.net/forum?id=qw8AKxfYbI

[104] Jonathan J. Hull. A database for handwritten text recognition research. IEEE

Transactions on pattern analysis and machine intelligence, 16(5):550–554, 1994.

[105] Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Composition-

ality decomposed: How do neural networks generalise? Journal of Artificial

Intelligence Research, 67:757–795, 2020.

[106] Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical

models by score matching. Journal of Machine Learning Research, 6(4), 2005.

[107] Oleg Ivanov, Michael Figurnov, and Dmitry Vetrov. Variational autoencoder with

arbitrary conditioning. In International Conference on Learning Representations,

2019. URL https://openreview.net/forum?id=SyxtJh0qYm.

[108] Moksh Jain, Sharath Chandra Raparthy, Alex Hernandez-Garcia, Jarrid Rector-

Brooks, Yoshua Bengio, Santiago Miret, and Emmanuel Bengio. Multi-objective

GFlownets. In International Conference on Machine Learning, pages 14631–

14653. PMLR, 2023.

[109] Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning

with diffusion for flexible behavior synthesis. In International Conference on

Machine Learning, pages 9902–9915. PMLR, 2022.

[110] Chiyu Jiang, Andre Cornman, Cheolho Park, Benjamin Sapp, Yin Zhou,

Dragomir Anguelov, et al. Motiondiffuser: Controllable multi-agent motion

prediction using diffusion. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 9644–9653, 2023.

[111] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Multi-objective molecule

generation using interpretable substructures. In International conference on

machine learning, pages 4849–4859. PMLR, 2020.

[112] Bowen Jing, Gabriele Corso, Jeffrey Chang, Regina Barzilay, and Tommi

Jaakkola. Torsional diffusion for molecular conformer generation. Advances in

Neural Information Processing Systems, 35:24240–24253, 2022.

181

https://openreview.net/forum?id=SyxtJh0qYm

[113] Fredrik D Johansson, David Sontag, and Rajesh Ranganath. Support and

invertibility in domain-invariant representations. In The 22nd International

Conference on Artificial Intelligence and Statistics, pages 527–536. PMLR, 2019.

[114] Alexia Jolicoeur-Martineau. The relativistic discriminator: a key element missing

from standard GAN. In International Conference on Learning Representations,

2019. URL https://openreview.net/forum?id=S1erHoR5t7.

[115] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,

Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Ž́ıdek,

Anna Potapenko, et al. Highly accurate protein structure prediction with

alphafold. Nature, 596(7873):583–589, 2021.

[116] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture

for generative adversarial networks. In Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition, pages 4401–4410, 2019.

[117] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the

design space of diffusion-based generative models. In Alice H. Oh, Alekh

Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural

Information Processing Systems, 2022. URL https://openreview.net/forum?

id=k7FuTOWMOc7.

[118] Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising

diffusion restoration models. Advances in Neural Information Processing Systems,

35:23593–23606, 2022.

[119] Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel,

Inbar Mosseri, and Michal Irani. Imagic: Text-based real image editing with

diffusion models. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 6007–6017, 2023.

[120] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

182

https://openreview.net/forum?id=S1erHoR5t7
https://openreview.net/forum?id=k7FuTOWMOc7
https://openreview.net/forum?id=k7FuTOWMOc7

[121] diederik p kingma and jimmy ba. Adam: a method for stochastic optimization.

In international conference on learning representations, 2015.

[122] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In

Yoshua Bengio and Yann LeCun, editors, 2nd International Conference on

Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,

Conference Track Proceedings, 2014. URL http://arxiv.org/abs/1312.6114.

[123] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible

1x1 convolutions. Advances in neural information processing systems, 31, 2018.

[124] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura

Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo,

Piotr Dollár, and Ross B. Girshick. Segment anything. ArXiv, abs/2304.02643,

2023.

[125] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter.

Self-normalizing neural networks. In Advances in Neural Information Processing

Systems, pages 971–980, 2017.

[126] Edwin M Knorr, Raymond T Ng, and Vladimir Tucakov. Distance-based outliers:

algorithms and applications. The VLDB Journal, 8(3):237–253, 2000.

[127] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and

techniques. MIT press, 2009.

[128] Andrei N. Kolmogorov. Grundbegriffe der wahrscheinlichkeitsrechnung. Springer,

Berlin, 1933. A Russian translation by G. M. Bavli, appeared under the title

Основные понятия теории вероятностей (Nauka, Moscow) in 1936 [279],

with a second edition, slightly expanded by Kolmogorov with the assistance of A.

N. Shiryaev, in 1974, and a third edition (FAZIS, Moscow) in 1998. An English

translation by N. Morrison appeared under the title Foundations of the Theory

of Probability (Chelsea, New York) in 1950 [129], with a second edition in 1956.

183

http://arxiv.org/abs/1312.6114

[129] Andrey Kolmogorov. Foundations of the theory of probability. Chelsea Publishing

Co., 1950.

[130] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

[131] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. Advances in neural information

processing systems, 25, 2012.

[132] Abhishek Kumar, Prasanna Sattigeri, Kahini Wadhawan, Leonid Karlinsky,

Rogerio Feris, Bill Freeman, and Gregory Wornell. Co-regularized alignment for

unsupervised domain adaptation. Advances in Neural Information Processing

Systems, 31:9345–9356, 2018.

[133] Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word

embeddings to document distances. In International conference on machine

learning, pages 957–966. PMLR, 2015.

[134] Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra

Volokhova, Alex Hernández-Garcıa, Léna Néhale Ezzine, Yoshua Bengio, and

Nikolay Malkin. A theory of continuous generative flow networks. In Interna-

tional Conference on Machine Learning, pages 18269–18300. PMLR, 2023.

[135] Guanghui Lan. First-order and stochastic optimization methods for machine

learning, volume 1. Springer, 2020.

[136] Greg Landrum. Rdkit: Open-source cheminformatics, 2010. URL https:

//www.rdkit.org/.

[137] Hugo Larochelle and Iain Murray. The neural autoregressive distribution esti-

mator. In Proceedings of the fourteenth international conference on artificial

intelligence and statistics, pages 29–37. JMLR Workshop and Conference Pro-

ceedings, 2011.

184

https://www.rdkit.org/
https://www.rdkit.org/

[138] Yann LeCun. The mnist database of handwritten digits.

http://yann.lecun.com/exdb/mnist/, 1998.

[139] Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, Richard Howard,

Wayne Hubbard, and Lawrence Jackel. Handwritten digit recognition with a

back-propagation network. Advances in neural information processing systems,

2, 1989.

[140] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):

2278–2324, 1998.

[141] Yann LeCun, Sumit Chopra, Raia Hadsell, Marc’Aurelio Ranzato, and Fu Jie

Huang. A tutorial on energy-based learning. 2006.

[142] Yuseung Lee, Kunho Kim, Hyunjin Kim, and Minhyuk Sung. Syncdiffusion: Co-

herent montage via synchronized joint diffusions. Advances in Neural Information

Processing Systems, 36:50648–50660, 2023.

[143] Bo Li, Yezhen Wang, Tong Che, Shanghang Zhang, Sicheng Zhao, Pengfei

Xu, Wei Zhou, Yoshua Bengio, and Kurt Keutzer. Rethinking distributional

matching based domain adaptation. arXiv preprint arXiv:2006.13352, 2020.

[144] Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás

Póczos. Mmd gan: Towards deeper understanding of moment matching network.

In Advances in Neural Information Processing Systems, pages 2203–2213, 2017.

[145] Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot. Domain generaliza-

tion with adversarial feature learning. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5400–5409, 2018.

[146] Ya Li, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang Liu, Kun Zhang, and

Dacheng Tao. Deep domain generalization via conditional invariant adversarial

networks. In Proceedings of the European Conference on Computer Vision

(ECCV), pages 624–639, 2018.

185

[147] Zinan Lin, Ashish Khetan, Giulia Fanti, and Sewoong Oh. Pacgan: The power

of two samples in generative adversarial networks. In Advances in Neural

Information Processing Systems, pages 1498–1507, 2018.

[148] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and

Matthew Le. Flow matching for generative modeling. In The Eleventh

International Conference on Learning Representations, 2023. URL https:

//openreview.net/forum?id=PqvMRDCJT9t.

[149] Nan Liu, Shuang Li, Yilun Du, Josh Tenenbaum, and Antonio Torralba. Learning

to compose visual relations. Advances in Neural Information Processing Systems,

34:23166–23178, 2021.

[150] Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B Tenenbaum.

Compositional visual generation with composable diffusion models. In Computer

Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27,

2022, Proceedings, Part XVII, pages 423–439. Springer, 2022.

[151] Nan Liu, Yilun Du, Shuang Li, Joshua B Tenenbaum, and Antonio Torralba.

Unsupervised compositional concepts discovery with text-to-image generative

models. ArXiv, abs/2306.05357, 2023.

[152] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning

to generate and transfer data with rectified flow. In The Eleventh International

Conference on Learning Representations, 2023. URL https://openreview.net/

forum?id=XVjTT1nw5z.

[153] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning

transferable features with deep adaptation networks. In International conference

on machine learning, pages 97–105. PMLR, 2015.

[154] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Deep transfer

learning with joint adaptation networks. In International conference on machine

learning, pages 2208–2217. PMLR, 2017.

186

https://openreview.net/forum?id=PqvMRDCJT9t
https://openreview.net/forum?id=PqvMRDCJT9t
https://openreview.net/forum?id=XVjTT1nw5z
https://openreview.net/forum?id=XVjTT1nw5z

[155] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Con-

ditional adversarial domain adaptation. In Advances in Neural Information

Processing Systems, page 1640–1650, 2018.

[156] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte,

and Luc Van Gool. Repaint: Inpainting using denoising diffusion probabilistic

models. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pages 11461–11471, June 2022.

[157] David JC MacKay. Information theory, inference and learning algorithms.

Cambridge university press, 2003.

[158] Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio.

Trajectory balance: Improved credit assignment in GFlownets. In Advances in

Neural Information Processing Systems, volume 35, pages 5955–5967, 2022.

[159] Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward J Hu, Katie E

Everett, Dinghuai Zhang, and Yoshua Bengio. GFlownets and variational

inference. In The Eleventh International Conference on Learning Representations,

2023. URL https://openreview.net/forum?id=uKiE0VIluA-.

[160] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen

Paul Smolley. Least squares generative adversarial networks. In Proceedings of

the IEEE International Conference on Computer Vision, pages 2794–2802, 2017.

[161] Dimitra Maoutsa, Sebastian Reich, and Manfred Opper. Interacting particle

solutions of fokker–planck equations through gradient–log–density estimation.

Entropy, 22(8):802, 2020.

[162] Giorgio Mariani, Irene Tallini, Emilian Postolache, Michele Mancusi, Luca

Cosmo, and Emanuele Rodolà. Multi-source diffusion models for simultaneous

music generation and separation. In The Twelfth International Conference on

Learning Representations, 2024. URL https://openreview.net/forum?id=

h922Qhkmx1.

187

https://openreview.net/forum?id=uKiE0VIluA-
https://openreview.net/forum?id=h922Qhkmx1
https://openreview.net/forum?id=h922Qhkmx1

[163] Manel Mateos, Alejandro González, and Xavier Sevillano. Guiding gans: How

to control non-conditional pre-trained gans for conditional image generation.

arXiv preprint arXiv:2101.00990, 2021.

[164] François Mazé and Faez Ahmed. Diffusion models beat gans on topology

optimization. In Proceedings of the AAAI conference on artificial intelligence,

volume 37, pages 9108–9116, 2023.

[165] Eric Mazumdar, Lillian J Ratliff, and S Shankar Sastry. On gradient-based

learning in continuous games. SIAM Journal on Mathematics of Data Science,

2(1):103–131, 2020.

[166] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu,

and Stefano Ermon. SDEdit: Guided image synthesis and editing with stochastic

differential equations. In International Conference on Learning Representations,

2022. URL https://openreview.net/forum?id=aBsCjcPu_tE.

[167] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. The numerics of gans.

In Advances in Neural Information Processing Systems, pages 1825–1835, 2017.

[168] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training

methods for gans do actually converge? In International Conference on Machine

Learning, pages 3481–3490, 2018.

[169] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets.

arXiv preprint arXiv:1411.1784, 2014.

[170] Takeru Miyato and Masanori Koyama. cGANs with projection discriminator.

In International Conference on Learning Representations, 2018. URL https:

//openreview.net/forum?id=ByS1VpgRZ.

[171] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida.

Spectral normalization for generative adversarial networks. arXiv preprint

arXiv:1802.05957, 2018.

188

https://openreview.net/forum?id=aBsCjcPu_tE
https://openreview.net/forum?id=ByS1VpgRZ
https://openreview.net/forum?id=ByS1VpgRZ

[172] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. Human-level control through deep reinforcement learning.

nature, 518(7540):529–533, 2015.

[173] Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte

carlo gradient estimation in machine learning. Journal of Machine Learning

Research, 21(132):1–62, 2020.

[174] Kevin P. Murphy. Probabilistic Machine Learning: An introduction. MIT Press,

2022. URL http://probml.github.io/book1.

[175] Kevin P. Murphy. Probabilistic Machine Learning: Advanced Topics. MIT Press,

2023. URL http://probml.github.io/book2.

[176] Vaishnavh Nagarajan and J Zico Kolter. Gradient descent gan optimization is

locally stable. In Advances in Neural Information Processing Systems, pages

5585–5595, 2017.

[177] Radford M Neal. Mcmc using hamiltonian dynamics. In Handbook of Markov

Chain Monte Carlo, pages 113–162. Chapman and Hall/CRC, 2011.

[178] Yurii Nesterov. Introductory lectures on convex optimization: A basic course,

volume 87. Springer Science & Business Media, 2013.

[179] Andrew Ng and Michael Jordan. On discriminative vs. generative classifiers: A

comparison of logistic regression and naive bayes. Advances in neural information

processing systems, 14, 2001.

[180] Trung Nguyen, Quang-Hieu Pham, Tam Le, Tung Pham, Nhat Ho, and Binh-Son

Hua. Point-set distances for learning representations of 3d point clouds. arXiv

preprint arXiv:2102.04014, 2021.

[181] XuanLong Nguyen, Martin J Wainwright, and Michael I Jordan. Estimating

divergence functionals and the likelihood ratio by convex risk minimization.

IEEE Transactions on Information Theory, 56(11):5847–5861, 2010.

189

http://probml.github.io/book1
http://probml.github.io/book2

[182] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, and Ying Nian Wu. Learning non-

convergent non-persistent short-run mcmc toward energy-based model. Advances

in Neural Information Processing Systems, 32, 2019.

[183] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training genera-

tive neural samplers using variational divergence minimization. In Proceedings

of the 30th International Conference on Neural Information Processing Systems,

pages 271–279, 2016.

[184] OpenAI. Chatgpt (mar 14, 2023 version). Large language model, 2023. URL

https://chat.openai.com/chat.

[185] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc

Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel HAZIZA, Francisco Massa,

Alaaeldin El-Nouby, Mido Assran, Nicolas Ballas, Wojciech Galuba, Russell

Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu

Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick Labatut,

Armand Joulin, and Piotr Bojanowski. DINOv2: Learning robust visual features

without supervision. Transactions on Machine Learning Research, 2024. ISSN

2835-8856. URL https://openreview.net/forum?id=a68SUt6zFt.

[186] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright,

Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,

et al. Training language models to follow instructions with human feedback. In

Advances in Neural Information Processing Systems, volume 35, pages 27730–

27744, 2022.

[187] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive

flow for density estimation. Advances in neural information processing systems,

30, 2017.

[188] Giorgio Parisi. Correlation functions and computer simulations. Nuclear Physics

B, 180(3):378–384, 1981.

190

https://chat.openai.com/chat
https://openreview.net/forum?id=a68SUt6zFt

[189] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,

Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

et al. Pytorch: An imperative style, high-performance deep learning library.

Advances in neural information processing systems, 32, 2019.

[190] Judea Pearl. Causality. Cambridge University Press, 2 edition, 2009.

[191] Zhongyi Pei, Zhangjie Cao, Mingsheng Long, and Jianmin Wang. Multi-

adversarial domain adaptation. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 32, 2018.

[192] Stefano Peluchetti. Non-denoising forward-time diffusions, 2022. URL https:

//openreview.net/forum?id=oVfIKuhqfC.

[193] Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman, Dequan Wang, and

Kate Saenko. Visda: The visual domain adaptation challenge, 2017.

[194] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang.

Moment matching for multi-source domain adaptation. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, pages 1406–1415,

2019.

[195] Pramuditha Perera, Ramesh Nallapati, and Bing Xiang. Ocgan: One-class nov-

elty detection using gans with constrained latent representations. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 2898–2906, 2019.

[196] Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal

inference: foundations and learning algorithms. The MIT Press, 2017.

[197] Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With

applications to data science. Foundations and Trends® in Machine Learning,

11(5-6):355–607, 2019.

191

https://openreview.net/forum?id=oVfIKuhqfC
https://openreview.net/forum?id=oVfIKuhqfC

[198] LS Pontryagin, VG Boltyanskii, RV Gamkrelidze, and EF Mishchenko. Mathe-

matical Theory of Optimal Processes. CRC Press, 1986. Originally published

in Russian as Математическая теория оптимальных процессов (Nauka,

Moscow) in 1961 [280].

[199] Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. Wasserstein barycen-

ter and its application to texture mixing. In International Conference on Scale

Space and Variational Methods in Computer Vision, pages 435–446. Springer,

2011.

[200] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation

learning with deep convolutional generative adversarial networks. arXiv preprint

arXiv:1511.06434, 2015.

[201] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving

language understanding with unsupervised learning. 2018.

[202] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya

Sutskever. Language models are unsupervised multitask learners. 2019.

[203] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,

Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,

et al. Learning transferable visual models from natural language supervision. In

International conference on machine learning, pages 8748–8763. PMLR, 2021.

[204] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano

Ermon, and Chelsea Finn. Direct preference optimization: Your language

model is secretly a reward model. In Thirty-seventh Conference on Neural

Information Processing Systems, 2023. URL https://openreview.net/forum?

id=HPuSIXJaa9.

[205] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec

Radford, Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In

International Conference on Machine Learning, pages 8821–8831. PMLR, 2021.

192

https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9

[206] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark

Chen. Hierarchical text-conditional image generation with clip latents. ArXiv,

abs/2204.06125, 2022.

[207] Mengwei Ren, Mauricio Delbracio, Hossein Talebi, Guido Gerig, and Peyman

Milanfar. Multiscale structure guided diffusion for image deblurring. In Proceed-

ings of the IEEE/CVF International Conference on Computer Vision (ICCV),

pages 10721–10733, October 2023.

[208] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing

flows. In International conference on machine learning, pages 1530–1538. PMLR,

2015.

[209] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic

backpropagation and approximate inference in deep generative models. In

International conference on machine learning, pages 1278–1286. PMLR, 2014.

[210] Herbert Robbins and Sutton Monro. A stochastic approximation method. The

annals of mathematical statistics, pages 400–407, 1951.

[211] Adam Roberts, Hyung Won Chung, Anselm Levskaya, Gaurav Mishra, James

Bradbury, Daniel Andor, Sharan Narang, Brian Lester, Colin Gaffney, Afroz

Mohiuddin, Curtis Hawthorne, Aitor Lewkowycz, Alexandru Salcianu, Marc van

Zee, Jacob Austin, Sebastian Goodman, Livio Baldini Soares, Haitang Hu, Sasha

Tsvyashchenko, Aakanksha Chowdhery, Jasmijn Bastings, Jannis Bulian, Xavier

Garćia, Jianmo Ni, Andrew Chen, Kathleen Kenealy, J. Clark, Stephan Lee,

Daniel H Garrette, James Lee-Thorp, Colin Raffel, Noam M. Shazeer, Marvin

Ritter, Maarten Bosma, Alexandre Passos, Jeremy B. Maitin-Shepard, Noah

Fiedel, Mark Omernick, Brennan Saeta, Ryan Sepassi, Alexander Spiridonov,

Joshua Newlan, and Andrea Gesmundo. Scaling up models and data with t5x

and seqio. ArXiv, abs/2203.17189, 2022.

[212] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and

Björn Ommer. High-resolution image synthesis with latent diffusion models.

193

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 10684–10695, 2022.

[213] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional

networks for biomedical image segmentation. In Medical Image Computing and

Computer-Assisted Intervention – MICCAI 2015: 18th International Conference,

Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pages 234–241.

Springer, 2015.

[214] Kevin Roth, Aurelien Lucchi, Sebastian Nowozin, and Thomas Hofmann. Sta-

bilizing training of generative adversarial networks through regularization. In

Advances in Neural Information Processing Systems, pages 2018–2028, 2017.

[215] Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed

Siddiqui, Alexander Binder, Emmanuel Müller, and Marius Kloft. Deep one-class

classification. In International conference on machine learning, pages 4393–4402.

PMLR, 2018.

[216] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein,

and Kfir Aberman. Dreambooth: Fine tuning text-to-image diffusion models

for subject-driven generation. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 22500–22510, 2023.

[217] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning

representations by back-propagating errors. nature, 323(6088):533–536, 1986.

[218] Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim

Salimans, David Fleet, and Mohammad Norouzi. Palette: Image-to-image

diffusion models. In ACM SIGGRAPH 2022 conference proceedings, pages 1–10,

2022.

[219] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L

Denton, Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan,

Tim Salimans, et al. Photorealistic text-to-image diffusion models with deep

194

language understanding. Advances in Neural Information Processing Systems,

35:36479–36494, 2022.

[220] Tim Salimans, Han Zhang, Alec Radford, and Dimitris Metaxas. Improv-

ing GANs using optimal transport. In International Conference on Learning

Representations, 2018. URL https://openreview.net/forum?id=rkQkBnJAb.

[221] Vishnu Sarukkai, Linden Li, Arden Ma, Christopher Ré, and Kayvon Fatahalian.

Collage diffusion. In Proceedings of the IEEE/CVF Winter Conference on

Applications of Computer Vision, pages 4208–4217, 2024.

[222] Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and

Robert C Williamson. Estimating the support of a high-dimensional distribution.

Neural computation, 13(7):1443–1471, 2001.

[223] John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient

estimation using stochastic computation graphs. Advances in neural information

processing systems, 28, 2015.

[224] Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. Wasserstein distance guided

representation learning for domain adaptation. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 32, 2018.

[225] Rui Shu, Hung Bui, Hirokazu Narui, and Stefano Ermon. A DIRT-t approach

to unsupervised domain adaptation. In International Conference on Learning

Representations, 2018. URL https://openreview.net/forum?id=H1q-TM-AW.

[226] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Gan-

guli. Deep unsupervised learning using nonequilibrium thermodynamics. In

International Conference on Machine Learning, pages 2256–2265. PMLR, 2015.

[227] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit

models. In International Conference on Learning Representations, 2021. URL

https://openreview.net/forum?id=St1giarCHLP.

195

https://openreview.net/forum?id=rkQkBnJAb
https://openreview.net/forum?id=H1q-TM-AW
https://openreview.net/forum?id=St1giarCHLP

[228] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of

the data distribution. Advances in neural information processing systems, 32,

2019.

[229] Yang Song and Stefano Ermon. Improved techniques for training score-based

generative models. Advances in neural information processing systems, 33:

12438–12448, 2020.

[230] Yang Song and Diederik P Kingma. How to train your energy-based models.

arXiv preprint arXiv:2101.03288, 2021.

[231] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano

Ermon, and Ben Poole. Score-based generative modeling through stochastic

differential equations. In International Conference on Learning Representations,

2021. URL https://openreview.net/forum?id=PxTIG12RRHS.

[232] Suvrit Sra, Sebastian Nowozin, and Stephen J Wright. Optimization for machine

learning. Mit Press, 2011.

[233] Lukasz Struski, Marcin Mazur, Pawel Batorski, Przemyslaw Spurek, and Jacek

Tabor. Bounding evidence and estimating log-likelihood in vae. In International

Conference on Artificial Intelligence and Statistics, pages 5036–5051. PMLR,

2023.

[234] Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep

domain adaptation. In European conference on computer vision, pages 443–450.

Springer, 2016.

[235] Baochen Sun, Jiashi Feng, and Kate Saenko. Return of frustratingly easy domain

adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 30, 2016.

[236] D’idac Sur’is, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via

python execution for reasoning. ArXiv, abs/2303.08128, 2023.

196

https://openreview.net/forum?id=PxTIG12RRHS

[237] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning

with neural networks. Advances in neural information processing systems, 27,

2014.

[238] Remi Tachet des Combes, Han Zhao, Yu-Xiang Wang, and Geoffrey J Gordon.

Domain adaptation with conditional distribution matching and generalized label

shift. Advances in Neural Information Processing Systems, 33, 2020.

[239] Shuhan Tan, Xingchao Peng, and Kate Saenko. Class-imbalanced domain

adaptation: An empirical odyssey. In European Conference on Computer Vision,

pages 585–602. Springer, 2020.

[240] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin

Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng.

Fourier features let networks learn high frequency functions in low dimensional

domains. Advances in Neural Information Processing Systems, 33:7537–7547,

2020.

[241] David MJ Tax and Robert PW Duin. Support vector data description. Machine

learning, 54(1):45–66, 2004.

[242] Ilya O Tolstikhin, Sylvain Gelly, Olivier Bousquet, Carl-Johann Simon-Gabriel,

and Bernhard Schölkopf. Adagan: Boosting generative models. Advances in

neural information processing systems, 30, 2017.

[243] Alexander Tong, Kilian FATRAS, Nikolay Malkin, Guillaume Huguet, Yanlei

Zhang, Jarrid Rector-Brooks, Guy Wolf, and Yoshua Bengio. Improving and

generalizing flow-based generative models with minibatch optimal transport.

Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL

https://openreview.net/forum?id=CD9Snc73AW. Expert Certification.

[244] Brian L. Trippe, Jason Yim, Doug Tischer, David Baker, Tamara Broderick,

Regina Barzilay, and Tommi S. Jaakkola. Diffusion probabilistic modeling of

protein backbones in 3d for the motif-scaffolding problem. In The Eleventh

197

https://openreview.net/forum?id=CD9Snc73AW

International Conference on Learning Representations, 2023. URL https://

openreview.net/forum?id=6TxBxqNME1Y.

[245] Christos Tsirigotis, Devon Hjelm, Aaron; Courville, and Pericles Mitkas. Objec-

tives towards stable adversarial training without gradient penalties. In Smooth

Games Optimization and Machine Learning Workshop, NeurIPS, 2019.

[246] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial

discriminative domain adaptation. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 7167–7176, 2017.

[247] Benigno Uria, Iain Murray, and Hugo Larochelle. A deep and tractable density

estimator. In International Conference on Machine Learning, pages 467–475.

PMLR, 2014.

[248] Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent

neural networks. In International conference on machine learning, pages 1747–

1756. PMLR, 2016.

[249] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation

learning. Advances in neural information processing systems, 30, 2017.

[250] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.

Advances in neural information processing systems, 30, 2017.

[251] Ramakrishna Vedantam, Ian Fischer, Jonathan Huang, and Kevin Murphy.

Generative models of visually grounded imagination. In International Conference

on Learning Representations, 2018. URL https://openreview.net/forum?id=

HkCsm6lRb.

[252] Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.

[253] Pascal Vincent. A connection between score matching and denoising autoen-

coders. Neural computation, 23(7):1661–1674, 2011.

198

https://openreview.net/forum?id=6TxBxqNME1Y
https://openreview.net/forum?id=6TxBxqNME1Y
https://openreview.net/forum?id=HkCsm6lRb
https://openreview.net/forum?id=HkCsm6lRb

[254] Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil

Purushwalkam, Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik.

Diffusion model alignment using direct preference optimization. arXiv preprint

arXiv:2311.12908, 2023.

[255] Jing Wang, Jiahong Chen, Jianzhe Lin, Leonid Sigal, and Clarence W de Silva.

Discriminative feature alignment: Improving transferability of unsupervised

domain adaptation by gaussian-guided latent alignment. Pattern Recognition,

116:107943, 2021.

[256] Wei Wang, Yuan Sun, and Saman Halgamuge. Improving MMD-GAN training

with repulsive loss function. In International Conference on Learning Represen-

tations, 2019. URL https://openreview.net/forum?id=HygjqjR9Km.

[257] Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason

Yim, Helen E Eisenach, Woody Ahern, Andrew J Borst, Robert J Ragotte,

Lukas F Milles, et al. De novo design of protein structure and function with

rfdiffusion. Nature, 620(7976):1089–1100, 2023.

[258] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Huai hsin Chi,

F. Xia, Quoc Le, and Denny Zhou. Chain of thought prompting elicits reasoning

in large language models. Advances in Neural Information Processing Systems,

35:24824–24837, 2022.

[259] Jay Whang, Mauricio Delbracio, Hossein Talebi, Chitwan Saharia, Alexandros G.

Dimakis, and Peyman Milanfar. Deblurring via stochastic refinement. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 16293–16303, June 2022.

[260] Jiqing Wu, Zhiwu Huang, Dinesh Acharya, Wen Li, Janine Thoma, Danda Pani

Paudel, and Luc Van Gool. Sliced wasserstein generative models. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), June 2019.

199

https://openreview.net/forum?id=HygjqjR9Km

[261] Tailin Wu, Takashi Maruyama, Long Wei, Tao Zhang, Yilun Du, Gianluca

Iaccarino, and Jure Leskovec. Compositional generative inverse design. In

The Twelfth International Conference on Learning Representations, 2024. URL

https://openreview.net/forum?id=wmX0CqFSd7.

[262] Yifan Wu, Ezra Winston, Divyansh Kaushik, and Zachary Lipton. Domain

adaptation with asymmetrically-relaxed distribution alignment. In International

Conference on Machine Learning, pages 6872–6881. PMLR, 2019.

[263] Jianwen Xie, Yang Lu, Song-Chun Zhu, and Yingnian Wu. A theory of generative

convnet. In International conference on machine learning, pages 2635–2644.

PMLR, 2016.

[264] Yutong Xie, Chence Shi, Hao Zhou, Yuwei Yang, Weinan Zhang, Yong Yu,

and Lei Li. MARS: Markov Molecular Sampling for Multi-objective Drug

Discovery. In International Conference on Learning Representations, 2021. URL

https://openreview.net/forum?id=kHSu4ebxFXY.

[265] Yilun Xu, Ziming Liu, Max Tegmark, and Tommi Jaakkola. Poisson flow

generative models. Advances in Neural Information Processing Systems, 35:

16782–16795, 2022.

[266] Yilun Xu, Ziming Liu, Yonglong Tian, Shangyuan Tong, Max Tegmark, and

Tommi Jaakkola. Pfgm++: Unlocking the potential of physics-inspired genera-

tive models. In International Conference on Machine Learning, pages 38566–

38591. PMLR, 2023.

[267] Jason Yim, Andrew Campbell, Emile Mathieu, Andrew YK Foong, Michael

Gastegger, José Jiménez-Luna, Sarah Lewis, Victor Garcia Satorras, Bastiaan S

Veeling, Frank Noé, et al. Improved motif-scaffolding with se (3) flow matching.

arXiv preprint arXiv:2401.04082, 2024.

[268] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J

200

https://openreview.net/forum?id=wmX0CqFSd7
https://openreview.net/forum?id=kHSu4ebxFXY

Kim. Graph transformer networks. Advances in neural information processing

systems, 32, 2019.

[269] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R

Salakhutdinov, and Alexander J Smola. Deep sets. In Advances in neural

information processing systems, pages 3391–3401, 2017.

[270] Matthew D Zeiler. Adadelta: an adaptive learning rate method. ArXiv,

abs/1212.5701, 2012.

[271] Houssam Zenati, Manon Romain, Chuan-Sheng Foo, Bruno Lecouat, and Vi-

jay Chandrasekhar. Adversarially learned anomaly detection. In 2018 IEEE

International conference on data mining (ICDM), pages 727–736. IEEE, 2018.

[272] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into

Deep Learning. Cambridge University Press, 2023. https://D2L.ai.

[273] Dinghuai Zhang, Ricky TQ Chen, Nikolay Malkin, and Yoshua Bengio. Unifying

generative models with gflownets. ArXiv, abs/2209.02606, 2022.

[274] Lvmin Zhang and Maneesh Agrawala. Adding conditional control to text-to-

image diffusion models. ArXiv, abs/2302.05543, 2023.

[275] Qinsheng Zhang, Jiaming Song, Xun Huang, Yongxin Chen, and Ming-Yu Liu.

Diffcollage: Parallel generation of large content with diffusion models. In 2023

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

pages 10188–10198. IEEE, 2023.

[276] Weiwei Zhang, Jian Sun, and Xiaoou Tang. Cat head detection-how to effectively

exploit shape and texture features. In European Conference on Computer Vision,

pages 802–816. Springer, 2008.

[277] Han Zhao, Shanghang Zhang, Guanhang Wu, José MF Moura, Joao P Costeira,

and Geoffrey J Gordon. Adversarial multiple source domain adaptation. In

Advances in Neural Information Processing Systems, pages 8568–8579, 2018.

201

https://D2L.ai

[278] Han Zhao, Remi Tachet Des Combes, Kun Zhang, and Geoffrey Gordon. On

learning invariant representations for domain adaptation. In International

Conference on Machine Learning, pages 7523–7532. PMLR, 2019.

[279] Андрей Николаевич Колмогоров. Основные понятия теории вероятностей.

Наука, 1936.

[280] Лев Семёнович Понтрягин, Владимир Григорьевич Болтянский,

Реваз Валерианович Гамкрелидзе, and Евгений Фролович Мищенко.

Математическая теория оптимальных процессов. Наука, 1961.

202

Appendices

203

204

Appendix A

Pairwise-Discriminator Objectives for

Generative Adversarial Networks

A.1 Proof of Proposition 3.5.1

Recall that we consider a particular instance of the game (3.7) corresponding to:

𝑓1(𝑡) = − log(𝑡), 𝑓2(𝑡) = − log(1− 𝑡), 𝑔(𝑡) = log(𝑡).

First, we expand the expression for the discriminator loss (3.7a) in PairSGAN:

𝐿𝒟(𝐷, 𝑞) = + E𝑝(𝑥)𝑝(𝑦) [− log𝐷(𝑥, 𝑦)] + E𝑞(𝑥)𝑞(𝑦) [− log𝐷(𝑥, 𝑦)]

+ E𝑝(𝑥)𝑞(𝑦) [− log(1−𝐷(𝑥, 𝑦))] + E𝑞(𝑥)𝑝(𝑦) [− log(1−𝐷(𝑥, 𝑦))] .

We expand all expectations as the integrals and obtain:

𝐿𝒟 =

∫︁∫︁ [︁
− log𝐷(𝑥, 𝑦)

(︁
𝑝(𝑥)𝑝(𝑦) + 𝑞(𝑥)𝑞(𝑦)

)︁
− log(1−𝐷(𝑥, 𝑦))

(︁
𝑝(𝑥)𝑞(𝑦) + 𝑞(𝑥)𝑝(𝑦)

)︁]︁
𝑑𝑥 𝑑𝑦.

We minimize the integral by minimizing the expression inside the integral w.r.t 𝐷(𝑥, 𝑦)

205

point-wise. Solving for the optimal 𝐷(𝑥, 𝑦) ∈ (0, 1), we obtain:

𝐷*(𝑥, 𝑦)=
𝑝(𝑥)𝑝(𝑦) + 𝑞(𝑥)𝑞(𝑦)

𝑝(𝑥)𝑝(𝑦) + 𝑞(𝑥)𝑞(𝑦) + 𝑝(𝑥)𝑞(𝑦) + 𝑞(𝑥)𝑝(𝑦)
.

We rewrite this expression as the function of the mixture distributions (3.3)

𝐷*(𝑥, 𝑦) =
𝑀+

𝑝,𝑞(𝑥, 𝑦)

2 ·𝑀𝑝,𝑞(𝑥, 𝑦)
.

Next, we substitute 𝐷* to the generator loss (3.7b):

𝐿𝒢(𝐷*, 𝑞) = + E𝑝(𝑥)𝑝(𝑦) [log𝐷*(𝑥, 𝑦)] + E𝑞(𝑥)𝑞(𝑦) [log𝐷*(𝑥, 𝑦)]

+ E𝑝(𝑥)𝑞(𝑦) [− log𝐷*(𝑥, 𝑦)] + E𝑞(𝑥)𝑝(𝑦) [− log𝐷*(𝑥, 𝑦)] .

We add and substract the terms E𝑝(𝑥)𝑝(𝑦) [log𝐷*(𝑥, 𝑦)] + E𝑞(𝑥)𝑞(𝑦) [log𝐷*(𝑥, 𝑦)] to the

expression above, and rewrite it as:

𝐿𝒢(𝐷*, 𝑞) = 4E𝑀+
𝑝,𝑞(𝑥,𝑦)

[log𝐷*(𝑥, 𝑦)]− 4E𝑀𝑝,𝑞(𝑥,𝑦) [log𝐷*(𝑥, 𝑦)]

= 4E𝑀+
𝑝,𝑞(𝑥,𝑦)

[︂
log

𝑀+
𝑝,𝑞(𝑥, 𝑦)

𝑀𝑝,𝑞(𝑥, 𝑦)
− log(2)

]︂
+ 4E𝑀𝑝,𝑞(𝑥,𝑦)

[︂
log

𝑀𝑝,𝑞(𝑥, 𝑦)

𝑀+
𝑝,𝑞(𝑥, 𝑦)

+ log(2)

]︂
.

After cancelling out the constant log(2) terms, the two expectations above give KL

and reverse-KL divergences between 𝑀𝑝,𝑞 and 𝑀+
𝑝,𝑞. Thus, we have shown that

𝐿𝒢(𝐷*, 𝑞) = 4 ·
(︁

KL(𝑀+
𝑝,𝑞‖𝑀𝑝,𝑞) + KL(𝑀𝑝,𝑞‖𝑀+

𝑝,𝑞)
)︁
.

The symmetrized KL-divergence above is non-negative and is equal to zero iff

𝑀𝑝,𝑞(𝑥, 𝑦) = 𝑀+
𝑝,𝑞(𝑥, 𝑦) ∀𝑥, 𝑦.

206

We transform the last equation in the following way:

1

2
(𝑀−

𝑝,𝑞(𝑥, 𝑦) +𝑀+
𝑝,𝑞(𝑥, 𝑦)) = 𝑀+

𝑝,𝑞(𝑥, 𝑦)

⇕

𝑀−
𝑝,𝑞(𝑥, 𝑦) = 𝑀+

𝑝,𝑞(𝑥, 𝑦)

⇕

𝑝(𝑥)𝑞(𝑦) + 𝑞(𝑥)𝑝(𝑦) = 𝑝(𝑥)𝑝(𝑦) + 𝑞(𝑥)𝑞(𝑦)

⇕(︀
𝑝(𝑥)− 𝑞(𝑥)

)︀
·
(︀
𝑝(𝑦)− 𝑞(𝑦)

)︀
= 0

The last equation holds for all (𝑥, 𝑦) iff 𝑝(·) = 𝑞(·).

A.2 Proof of Proposition 3.5.2

We expand the expression for the discriminator loss for PairGAN-Z (3.8):

𝐿𝒢(𝐷, 𝑞) = + E𝑝(𝑥)𝑝(𝑦) [log𝐷(𝑥, 𝑦)] + E𝑞(𝑥)𝑞(𝑦) [log𝐷(𝑥, 𝑦)]

− E𝑝(𝑥)𝑞(𝑦) [log𝐷(𝑥, 𝑦)]− E𝑞(𝑥)𝑝(𝑦) [log𝐷(𝑥, 𝑦)] .

We expand all expectations as integrals and obtain:

𝐿𝒢 =

∫︁∫︁ [︁(︁
𝑝(𝑥)𝑝(𝑦) + 𝑞(𝑥)𝑞(𝑦)− 𝑝(𝑥)𝑞(𝑦)− 𝑞(𝑥)𝑝(𝑦)

)︁
log𝐷(𝑥, 𝑦)

]︁
𝑑𝑥 𝑑𝑦.

We introduce the function 𝐹 (𝑥, 𝑦) as:

𝐹 (𝑥, 𝑦) = 𝑝(𝑥)𝑝(𝑦) + 𝑞(𝑥)𝑞(𝑦)− 𝑝(𝑥)𝑞(𝑦)− 𝑞(𝑥)𝑝(𝑦),

and re-write the loss as

𝐿𝒢 =

∫︁∫︁ [︁
𝐹 (𝑥, 𝑦) log𝐷(𝑥, 𝑦)

]︁
𝑑𝑥 𝑑𝑦.

207

Recall, that in PairGAN-Z the discriminator aims to maximize 𝐿𝒢. Therefore, our

goal is to maximize the expression in the integral pointwise w.r.t. 𝐷(𝑥, 𝑦) ∈ [𝜀, 1].

The optimal discriminator 𝐷* is given by1:

𝐷*(𝑥, 𝑦) =

⎧⎨⎩1, 𝐹 (𝑥, 𝑦) ≥ 0

𝜀, 𝐹 (𝑥, 𝑦) < 0
.

The logarithm of 𝐷* can be written as:

log𝐷*(𝑥, 𝑦) = log(𝜀) · I[𝐹 (𝑥, 𝑦) < 0].

We substitute log𝐷* to the generator loss and obtain:

𝐿𝒢(𝐷, 𝑞) = log(𝜀)

∫︁∫︁
𝐹 (𝑥, 𝑦) · I[𝐹 (𝑥, 𝑦) < 0] 𝑑𝑥 𝑑𝑦,

where the integral is exactly the negative total variation distance between 𝑀+
𝑝,𝑞 and

𝑀−
𝑝,𝑞. Thus, we have shown that:

𝐿𝒢(𝐷*, 𝑞) = − log(𝜀) · 𝛿TV(𝑀+
𝑝,𝑞‖𝑀−

𝑝,𝑞).

Similarly to the case of symmetrized KL-divergence in Proposition 3.5.1 proved in

Appendix A.1, the total variation distance is non-negative and equals to zero iff

𝑀+
𝑝,𝑞 = 𝑀−

𝑝,𝑞 ⇐⇒ 𝑝 = 𝑞.

A.3 Hessian of the Generator Loss

For a parametric generator 𝑞(·; 𝜃), we expand the generator loss (3.7b):

𝐿𝒢(𝐷, 𝑞𝜃) = + E𝑝(𝑥)𝑝(𝑦) [𝑔(𝐷(𝑥, 𝑦))] + E𝑞(𝑥;𝜃)𝑞(𝑦;𝜃) [𝑔(𝐷(𝑥, 𝑦))]

1We restrict the discriminator output 𝐷(𝑥, 𝑦) ≥ 𝜀, in order for the discriminator loss to be
bounded. For 𝐹 (𝑥, 𝑦) < 0, an unrestricted discriminator can drive log𝐷(𝑥, 𝑦) to −∞.

208

− E𝑝(𝑥)𝑞(𝑦;𝜃) [𝑔(𝐷(𝑥, 𝑦))]− E𝑞(𝑥;𝜃)𝑝(𝑦) [𝑔(𝐷(𝑥, 𝑦))] .

Now we compute the gradient, by expanding each expectation to an integral and

exchanging the order of differentiation and integration:

∇𝜃𝐿𝒢(𝐷, 𝑞𝜃) =

∫︁∫︁ (︃
∇𝜃𝑞(𝑥; 𝜃) · 𝑞(𝑦; 𝜃) + 𝑞(𝑥; 𝜃) · ∇𝜃𝑞(𝑦; 𝜃)

− 𝑝(𝑥) · ∇𝜃𝑞(𝑦; 𝜃)−∇𝜃𝑞(𝑥; 𝜃) · 𝑝(𝑦)

)︃
𝑔(𝐷(𝑥, 𝑦)) 𝑑𝑥 𝑑𝑦.

We compute the Hessian by differentiating the gradient:

∇𝜃𝐿𝒢(𝐷, 𝑞𝜃) =

∫︁∫︁ [︃(︃
2[∇𝜃𝑞(𝑥; 𝜃)][∇𝜃𝑞(𝑦; 𝜃)]𝑇+∇2

𝜃𝜃𝑞(𝑥; 𝜃)·𝑞(𝑦; 𝜃)+𝑞(𝑥; 𝜃)·∇2
𝜃𝜃𝑞(𝑦; 𝜃)

−∇2
𝜃𝜃𝑞(𝑥; 𝜃) · 𝑝(𝑦)− 𝑝(𝑥) · ∇2

𝜃𝜃𝑞(𝑦; 𝜃)

)︃
𝑔(𝐷(𝑥, 𝑦))

]︃
𝑑𝑥 𝑑𝑦.

Our final step is to substitute 𝜃 = 𝜃*. Since 𝑞(·; 𝜃*) = 𝑝(𝑥), in the expression above,

all terms except 2[∇𝜃𝑞(𝑥; 𝜃)][∇𝜃𝑞(𝑦; 𝜃)]𝑇 cancel out and we obtain equation (3.9).

A.4 Proof of Proposition 3.5.3

This sections provides the proof of the Proposition 3.5.3. The proof relies on the

following result by Mescheder et al. [168].

Theorem A.4.1 (Theorem A.3 of Mescheder et al. [168]). Let 𝐹 (𝛼, 𝛾) define a 𝒞1-
mapping that maps some domain Ω to itself. Assume that there is a local neighborhood

𝑈 of 0 such that 𝐹 (0, 𝛾) = (0, 𝛾) for 𝛾 ∈ 𝑈 . Moreover, assume that all eigenvalues of

𝐽 := ∇𝛼𝐹 (𝛼, 0) |𝛼=0 have absolute value smaller than 1. Then the fixed point iteration

defined by 𝐹 is locally convergent to ℳ := {(0, 𝛾) | 𝛾 ∈ 𝑈} with linear convergence

rate in a neighborhood of (0, 0). Moreover, the convergence rate is |𝜆max| with 𝜆max

the eigenvalue of 𝐽 with largest absolute value.

209

Gradient descent update. We denote the gradient of the loss 𝐿𝒢 w.r.t. 𝜃 as:

𝑔(𝜃;𝜓) = ∇𝜃𝐿𝒢(𝐷𝜓, 𝑞(·; 𝜃)).

We consider the update operator corresponding to the gradient descent for 𝐿𝒢 w.r.t.

𝜃:

𝐹ℎ(𝜃;𝜓) = 𝜃 − ℎ · 𝑔(𝜃;𝜓), (A.1)

where ℎ > 0 is the step size (learning rate). To understand the convergence of the

gradient descent we examine the eigenvalues of the Jacobian ∇𝜃𝐹ℎ(𝜃;𝜓) at 𝜃*. We

notice that ∇𝜃𝐹ℎ(𝜃
*;𝜓) is given by

∇𝜃𝐹ℎ(𝜃
;𝜓) = 𝐼 − ℎ ·𝐻(𝜃;𝜓),

where 𝐻(𝜃*;𝜓) is the Hessian given by (3.9). From (3.9), we observe that 𝐻(𝜃*;𝜓) is

a symmetric matrix and thus its eigenvalues are real numbers.

An eigenvalue 𝜆 of the Jacobian ∇𝜃𝐹ℎ(𝜃
*;𝜓) is given by:

𝜆 = 1− ℎ · 𝜇, (A.2)

where 𝜇 is the corresponding eigenvalue of the Hessian 𝐻(𝜃*;𝜓)

Below we provide the proof for Proposition 3.5.3.

Proposition 3.5.3. Suppose that 𝜃* ∈ℳ𝐺 and a pair (𝜓0, 𝜃
*) satisfies:

𝑢𝑇 [𝐻(𝜃*;𝜓0)]𝑢 > 0 ∀𝑢 /∈ 𝒯𝜃*ℳ𝐺. (A.3)

Then, with fixed 𝜓 = 𝜓0, gradient descent w.r.t. 𝜃 for (3.7b) converges to ℳ𝐺 in

a neighborhood of 𝜃* provided a small enough learning rate. Moreover, the rate of

convergence is at least linear.

Proof. Following Mescheder et al. [168], in order to apply Theorem A.4.1, we choose

local coordinates 𝛼, 𝛾 for 𝜃 : 𝜃(𝛼, 𝛾). Without loss of generality (see Remark A.6 of

210

Mescheder et al. [168]), we can assume that

𝜃* = 0, ℳ𝐺 = 𝒯 *
𝜃ℳ𝐺 = {0}𝑘 × R𝑛−𝑘,

𝜃(𝛼, 𝛾) = [𝛼, 𝛾]𝑇 , 𝛼 ∈ R𝑘, 𝛾 ∈ R𝑛−𝑘.

In the local coordinates a vector 𝑢 /∈ 𝒯𝜃*ℳ𝐺 has the form 𝑢 = (̃︀𝑢, 0), where ̃︀𝑢 ∈ R𝑘.

Let ̃︀𝐻 denote the sub-matrix of the Hessian 𝐻(𝜃*(𝛼, 𝛾);𝜓0) corresponding to the

coordinates 𝛼. Then, condition (A.3) transforms into:

̃︀𝑢𝑇 ̃︀𝐻̃︀𝑢 > 0 ∀ ̃︀𝑢,
which implies that ̃︀𝐻 has only positive eigenvalues.

In order to apply Theorem A.4.1, we have to show that all eigenvalues 𝜆 of the

Jacobian ∇𝛼𝐹ℎ(𝜃(𝛼, 𝛾);𝜓0)|𝛼=0 have absolute value smaller than 1. Given that ̃︀𝐻 has

only positive eigenvalues, the inequality 𝜆 < 1 is guaranteed by equation (A.2).Then

it is sufficient for us to choose learning rate ℎ that guarantees 𝜆 > −1. The inequality:

ℎ <
2̃︀𝜇max

,

ensures that 𝜆 > −1.

By Theorem A.4.1 the fixed point iteration for 𝐹ℎ converges toℳ𝐺.

A.5 Poof of Proposition 3.5.6

This section provides a proof of Proposition 3.5.6.

We introduce function space operators:

Γ1,Γ2 : R𝑛 → ℱ(𝒳),

Γ1 : (Γ1[𝑢])(𝑥) = [𝑔1(𝑥; 𝜃)]𝑇𝑢 = [∇𝜃𝑞(𝑥; 𝜃*)]𝑇𝑢,

Γ2 : (Γ2[𝑢])(𝑥) = [𝑔2(𝑥; 𝜃)]𝑇𝑢 = [∇𝜃 log 𝑞(𝑥; 𝜃*)]𝑇𝑢.

211

Informally, Γ1,Γ2 are matrices of size |𝒳 | × 𝑛 where the first dimension can be

infinite. Let us describe some properties of Γ1 and Γ2.

𝐴*
1 = Γ1Γ

𝑇
1 , 𝐴*

2 = Γ2Γ
𝑇
2 ,

∇𝜃 log 𝑞(𝑥; 𝜃) =
1

𝑞(𝑥; 𝜃)
∇𝜃𝑞(𝑥; 𝜃) =⇒ Γ2 = 𝐷𝑞Γ1,

where 𝐷𝑞 is a diagonal operator

𝐷𝑞(𝑥, 𝑦) = 𝐼[𝑥 = 𝑦]
1

𝑞(𝑥; 𝜃*)
,

with positive values on diagonal2.

With Γ1 we can represent the function-space perturbation 𝜀𝑢(𝑥) = [∇𝜃𝑞(𝑥; 𝜃*)]𝑇𝑢

as

𝜀𝑢 = Γ1𝑢

and re-write Definition 3.5.4 as

Γ1 𝑢 ̸= 0 =⇒ 𝑢𝑇 Γ𝑇1 𝐴Γ1 𝑢 > 0. (A.4)

By substituting 𝐴 = 𝐴*
1 in (A.4) we obtain:

Γ1 𝑢 ̸= 0 =⇒ ‖Γ𝑇1 Γ1 𝑢‖2 > 0.

This implication holds since Ker(Γ𝑇1) ⊥ Im(Γ1).

By substituting 𝐴 = 𝐴*
2 in (A.4), we obtain:

Γ1 𝑢 ̸= 0 =⇒ ‖Γ𝑇1𝐷𝑞Γ1 𝑢‖2 > 0,

or equivalently:

Γ1 𝑢 ̸= 0 =⇒
⃦⃦⃦(︀
𝐷

1
2
𝑞 Γ1

)︀𝑇 (︀
𝐷

1
2
𝑞 Γ1

)︀
𝑢
⃦⃦⃦2
> 0.

2𝑞 must be positive for log 𝑞 to be defined.

212

This implication holds since Γ1𝑢 ̸= 0⇒ 𝐷
1
2
𝑞 Γ1𝑢 ̸= 0 and Ker(𝐷

1
2
𝑞 Γ𝑇1) ⊥ Im(𝐷

1
2
𝑞 Γ1).

The minimality of the operators follows from the fact that:

rank(𝐴*
1) = rank(𝐴*

2) = dim(𝑊𝑞(𝜃
*)). (A.5)

Recall, that in Section 3.5.3 we denoted the components of the gradient ∇𝜃𝑞(𝑥; 𝜃*) as

function-space vectors 𝛼1, . . . , 𝛼𝑛 ∈ ℱ(𝒳):

𝛼𝑖(𝑥) =
𝜕

𝜕𝜃𝑖
𝑞(𝑥; 𝜃*).

Next, we observe that

𝑊𝑞(𝜃
*) = span(𝛼1, . . . , 𝛼𝑛),

𝐴*
1 =

𝑛∑︁
𝑖=1

𝛼𝑖𝛼
𝑇
𝑖 , 𝐴*

2 =
𝑛∑︁
𝑖=1

(𝐷𝑞𝛼𝑖)(𝐷𝑞𝛼𝑖)
𝑇 .

Equation (A.5) follows from the above representation for 𝐴*
1, 𝐴*

2 and 𝑊𝑞(𝜃
*).

Now, we derive the loss function (3.12). We substitute the discriminator-operator

𝐴*
𝑖 into the loss (3.7b):

𝐿*
𝑖 (𝜃) =

⟨︀
𝑝− 𝑞 , 𝐴*

𝑖 (𝑝− 𝑞)
⟩︀

=
⟨︀
𝑝− 𝑞 , Γ𝑖Γ

𝑇
𝑖 (𝑝− 𝑞)

⟩︀
= ‖Γ𝑇𝑖 (𝑝− 𝑞)‖2 = ‖Γ𝑇𝑖 𝑝− Γ𝑇𝑖 𝑞‖2

=
⃦⃦⃦
E𝑝(𝑥)

[︁
𝑔𝑖(𝑥; 𝜃)

]︁
− E𝑞(𝑥;𝜃)

[︁
𝑔𝑖(𝑥; 𝜃)

]︁⃦⃦⃦2

A.6 Proof of Proposition 3.5.7

This Section provides the proof of Proposition 3.5.7.

The gradient of the loss (3.14) w.r.t. 𝑝𝑖 is given

∇𝑝𝑖ℒ(𝑝1, . . . , 𝑝𝑁 |𝐷) = 2(𝑁 − 1)𝐴𝑔𝐷𝑝𝑖 −
𝑁∑︁
𝑠=1
𝑠 ̸=𝑖

2𝐴𝑔𝐷𝑝𝑠.

213

For 𝑖 ≤ 𝑘 we split the sum into two:

∇𝑝𝑖ℒ(𝑝1, . . . , 𝑝𝑁 |𝐷) = 2(𝑁 − 1)𝐴𝑔𝐷𝑝𝑖 − 2
𝑘∑︁
𝑠=1
𝑠 ̸=𝑖

𝐴𝑔𝐷𝑝𝑠 − 2
𝑁∑︁

𝑠=𝑘+1

𝐴𝑔𝐷𝑝𝑠.

Next, we use that for 𝑠 ≤ 𝑘 : 𝑝𝑠 = 𝑝𝑖, therefore:

∇𝑝𝑖ℒ(𝑝1, . . . , 𝑝𝑁 |𝐷) = 2(𝑁 −𝐾)𝐴𝑔𝐷𝑝𝑖 − 2
𝑁∑︁

𝑠=𝑘+1

𝐴𝑔𝐷𝑝𝑠.

Finally, we observe that both terms above take the same value for all 1 ≤ 𝑖 ≤ 𝑘. This

observation concludes the proof.

A.7 Toy Example Details

This section provides a detailed description of the toy examples shown in Section 3.1

(Figure 3-1), Section 3.5.2 (Figure 3-3), and Section A.6 (Figure 3-4).

Section A.7.1 describes the toy setup for GANs and the models (unary and pairwise)

used to produce Figure 3-1 and Figure 3-3. Section A.7.2 describes the toy example

for multiple distributions alignment (see Section A.6) and the models used to produce

Figure 3-4.

The implementation of the described toy examples is provided in the codebase

accompanying the Chapter.

A.7.1 DiracGAN & DiracPairGAN

Mescheder et al. [168] proposed DiracGAN a toy example of GAN, where both

target distribution 𝑝 and generative model 𝑞 are defined by delta functions (i.e. each

concentrated on a single point):

𝑝(𝑥) = 𝛿(𝑥− 𝑥real) 𝑞(𝑥) = 𝛿(𝑥− 𝑥fake).

Here, 𝑥real = 0 is a fixed real example, and 𝑥fake is a free parameter of the generative

214

model 𝑞. In this model, the distributions are aligned when 𝑥fake = 𝑥real.

Below we first consider the adversarial training objective for DiracGAN with a

simple parameterization of the discriminator used in Mescheder et al. [168]. Then

we introduce DiracPairGAN a modified formulation of DiracGAN with a pairwise

discriminator and generator loss of the form (3.6).

DiracGAN [168]

In DiracGAN, the discriminator is defined as linear function 𝐷𝜓(𝑥) = 𝜓 · 𝑥,
parameterized by a single number 𝜓. 𝐷𝜓 defines a linear classifier which estimates

the probability of a given sample 𝑥 being real/fake:

𝑃𝐷(𝑡 = real |𝑥, 𝜓) = 𝜎(𝐷𝜓(𝑥)), 𝑃𝐷(𝑡 = fake |𝑥, 𝜓) = 𝜎(−𝐷𝜓(𝑥)),

where 𝑡 ∈ {real, fake} is a class label and 𝜎(·) is the sigmoid function.

The discriminator is trained by maximizing log-likelihood:

ℒ(𝜓, 𝑥fake) = log𝑃𝐷(𝑡 = real |𝑥real, 𝜓) + log𝑃𝐷(𝑡 = fake |𝑥fake, 𝜓). (A.6)

The generator 𝑥fake and the discriminator 𝜓 compete in a zero-sum game:

min
𝑥fake

max
𝜓
ℒ(𝜓, 𝑥fake).

Note, that the first term in (A.6) is constant since 𝑥real = 0 is constant. Therefore,

ℒ can be equivalently re-written as:

̃︀ℒ(𝜓, 𝑥fake) = − log(1 + exp{𝜓 · 𝑥fake}).

It is easy to see that the alignment 𝑥fake = 0 is not preserved in DiracGAN unless

𝜓 = 0. To see that it is enough to check that

𝜓 ̸= 0 =⇒ 𝜕

𝜕𝑥
̃︀ℒ(𝜓, 0) ̸= 0.

DiracPairGAN

215

In DiracPairGAN, we define a symmetric pairwise discriminator 𝐷𝜓(𝑥, 𝑦) = 𝜓 ·
|𝑥− 𝑦|𝛾 where with a single parameter 𝜓 and a hyperparameter 𝛾 ≥ 1.

𝐷𝜓(𝑥, 𝑦) denotes a probabilistic classifier which estimates the probability of a

given pair of samples (𝑥, 𝑦) coming from the same distribution rather than different

distributions.

𝑃𝐷(𝑡 = same |𝑥, 𝑦, 𝜓) = 𝜎(𝐷𝜓(𝑥, 𝑦)), 𝑃𝐷(𝑡 = diff |𝑥, 𝑦, 𝜓) = 𝜎(−𝐷𝜓(𝑥, 𝑦)),

where 𝑡 ∈ {same, diff} denotes the class label.

The negative log-likelihood loss for the pairwise discriminator is given by

ℒ𝐷(𝜓, 𝑥fake) =− log𝑃𝐷(𝑡 = same |𝑥real, 𝑥real, 𝜓)− log𝑃𝐷(𝑡 = same |𝑥fake, 𝑥fake, 𝜓)

− log𝑃𝐷(𝑡 = diff |𝑥real, 𝑥fake, 𝜓)− log𝑃𝐷(𝑡 = diff |𝑥fake, 𝑥real, 𝜓).

(A.7)

We define an instance of PairGAN generator loss (3.7b):

ℒ𝐺(𝜓, 𝑥fake) =− log𝑃𝐷(𝑡 = diff |𝑥real, 𝑥real, 𝜓)− log𝑃𝐷(𝑡 = diff |𝑥fake, 𝑥fake, 𝜓)

+ log𝑃𝐷(𝑡 = diff |𝑥real, 𝑥fake, 𝜓) + log𝑃𝐷(𝑡 = diff |𝑥fake, 𝑥real, 𝜓).

(A.8)

In general formulation of PairGAN the generator and the discriminator compete

in a non-zero sum game:

min
𝜓
ℒ𝐷(𝜓, 𝑥fake)

min
𝑥fake
ℒ𝐺(𝜓, 𝑥fake).

We note, that our choice of parameterization allows us to re-write the game in a

simplified form. Indeed, the first two terms in both (A.7) and (A.8) are constant and

all equal to − log(1
2
) since 𝐷𝜓(𝑥, 𝑥) = 0. Thus, the only difference in the losses (A.7)

and (A.8) is in the signs of the third and the fourth terms. Observing this, we obtain

216

an equivalent zero-sum game:

min
𝑥fake

max
𝜓

̃︀ℒ(𝜓, 𝑥fake),

where ̃︀ℒ(𝜓, 𝑥fake) = − log(1 + exp{𝜓 · |𝑥fake|𝛾}).

In DiracPairGAN the alignment is preserved for any 𝜓 since ̃︀ℒ(𝜓, 𝑥fake) is a function

of absolute value of 𝑥fake and, consequently,

𝜕

𝜕𝑥
̃︀ℒ(𝜓, 0) = 0 ∀𝜓.

A.7.2 Multiple Distributions

Below we consider the toy example demonstrating adversarial alignment of multiple

distributions (see Section A.6).

Consider, three delta functions: 𝑝1, 𝑝2, 𝑝3:

𝑝𝑖(𝑥) = 𝛿(𝑥− 𝑥𝑖),

parameterized by real numbers 𝑥1, 𝑥2, and 𝑥3 respectively. The goal of the toy models

described below is to align the three distributions with one another, i.e. reach a

situation where 𝑥1 = 𝑥2 = 𝑥3.

Unary discriminator

For the three distributions problem we utilize a unary discriminator

𝐷𝜓(𝑥) = [𝑠1(𝑥,𝜓), 𝑠2(𝑥,𝜓), 𝑠3(𝑥,𝜓)],

which defines a 3-class softmax classifier

𝑃𝐷(𝑡 = 𝑖 |𝑥,𝜓) =
exp{𝑠𝑖(𝑥,𝜓)}
3∑︀
𝑗=1

exp{𝑠𝑗(𝑥,𝜓)}
,

217

where 𝑡 ∈ {1, 2, 3} is a class label and 𝑃𝐷(𝑡 = 𝑖 |𝑥,𝜓) is an estimate of the probability

of a given sample 𝑥 coming from 𝑝𝑖(·).
We define the logits 𝑠𝑖 as quadratic parametric functions

𝑠𝑖(𝑥,𝜓) = 𝑎𝑖𝑥
2 + 𝑏𝑖𝑥+ 𝑐𝑖, 𝑖 ∈ {1, 2, 3}

with 𝜓 defined as a vector of all nine parameters

𝜓 = [𝑎1, 𝑏1, 𝑐1, 𝑎2, 𝑏2, 𝑐2, 𝑎3, 𝑏3, 𝑐3]
𝑇 .

One can think of 𝐷𝜓(𝑥) as a linear classifier operating on a non-linear feature

representation 𝜑(𝑥) = [𝑥2, 𝑥, 1]𝑇 :

𝑠𝑖(𝑥,𝜓) = [𝑎𝑖, 𝑏𝑖, 𝑐𝑖][𝑥
2, 𝑥, 1]𝑇 .

Note that with the described parameterization, the unary discriminator is powerful

enough to represent a zero-error decision boundary for any location of the points

𝑥1, 𝑥2, 𝑥3.

Similarly to the examples above, we train discriminator by maximizing log-

likelihood

ℒ(𝜓, 𝑥1, 𝑥2, 𝑥3) =
3∑︁
𝑖=1

log𝑃𝐷(𝑡 = 𝑖 |𝑥𝑖,𝜓), (A.9)

and define a zero-sum game between the points 𝑥1, 𝑥2, 𝑥3 and discriminator 𝜓:

min
𝑥1,𝑥2,𝑥3

max
𝜓
ℒ(𝜓, 𝑥1, 𝑥2, 𝑥3).

Pairwise discriminator

Now, we define a multiple distributions model with a pairwise discriminator. Again,

we utilize the same pairwise discriminator as in Section A.7.1: 𝐷𝜓(𝑥, 𝑦) = 𝜓 · |𝑥− 𝑦|𝛾 :

𝑃𝐷(𝑡 = same |𝑥, 𝑦, 𝜓) = 𝜎(𝐷𝜓(𝑥, 𝑦)),

𝑃𝐷(𝑡 = diff |𝑥, 𝑦, 𝜓) = 𝜎(−𝐷𝜓(𝑥, 𝑦)).

218

We use the following weighted negative log-likelihood objective for the discrimina-

tor:

ℒ𝐷(𝜓, 𝑥1, 𝑥2, 𝑥3) = −2
3∑︁
𝑖=1

log𝑃𝐷(𝑡 = same |𝑥𝑖, 𝑥𝑖, 𝜓)−
∑︁
𝑖 ̸=𝑗

log𝑃𝐷(𝑡 = diff |𝑥𝑖, 𝑥𝑗, 𝜓),

(A.10)

computed for same distribution pairs (𝑥𝑖, 𝑥𝑖) and different distributions pairs (𝑥𝑖, 𝑥𝑗) :

𝑖 ̸= 𝑗. In order to equalize the 3 : 6 ratio of the number of {𝑡 = same}-pairs to the

number of {𝑡 = diff}-pairs, we virtually augment the set of same distribution pair by

using the weights 𝑤same = 2, 𝑤diff = 1.

Next, we define a non-zero sum game between 𝜓 and 𝑥1, 𝑥2, 𝑥3:

min
𝜓
ℒ𝐷(𝜓, 𝑥1, 𝑥2, 𝑥3),

min
𝑥1,𝑥2,𝑥3

ℒ𝐺(𝜓, 𝑥1, 𝑥2, 𝑥3),

where the loss for 𝑥1, 𝑥2, 𝑥3 is an instance of the adversarial loss (3.14) introduced in

Section A.6:

ℒ𝐺(𝜓, 𝑥1, 𝑥2, 𝑥3) = −2
3∑︁
𝑖=1

log𝑃𝐷(𝑡 = diff |𝑥𝑖, 𝑥𝑖, 𝜓) +
∑︁
𝑖 ̸=𝑗

log𝑃𝐷(𝑡 = diff |𝑥𝑖, 𝑥𝑗, 𝜓).

(A.11)

Since 𝐷𝜓(𝑥, 𝑥) = 0, the first terms in both (A.10) and (A.11) are constant.

Therefore, the considered setup can be reduced to a zero-sum game:

min
𝑥1,𝑥2,𝑥3

max
𝜓

̃︀ℒ(𝜓, 𝑥1, 𝑥2, 𝑥3),

where the loss ̃︀ℒ is given by

̃︀ℒ(𝜓, 𝑥1, 𝑥2, 𝑥3) = −
∑︁
𝑖 ̸=𝑗

log(1 + exp{𝜓 · |𝑥𝑖 − 𝑥𝑗|𝛾}).

Comments on domain-adversarial methods for domain-adaptation. The loss

(A.9) used in the unary discriminator above is a simplified instance of the domain loss

219

used in domain adversarial neural networks [DANN, 73]. In domain adversarial training

notation, {𝑝𝑖(𝑥)}3𝑖=1 represent the distribution of representations in different domains.

The domain loss (A.9) is one of the terms in DANN objective. Optimization of the

domain loss (A.9) w.r.t. parameters of distribution {𝑝𝑖(𝑥)}3𝑖=1 can be interpreted as

minimization of a divergence between the distributions. This regularization mechanism

is expected to make the learned representation 𝑥 invariant across the domains.

Note that this example represents only a part of the adversarial objective used

in DANN. The full adversarial training procedure is defined as a three-player game

between a feature extractor, a classifier and a domain discriminator. In contrast, here

we only focus on one loss term which is responsible for the alignment of the distributions.

Moreover, in DANN the distributions {𝑝𝑖(𝑥)}3𝑖=1 are interconnected through the

shared parameterization, while in the presented toy model we consider independently

parameterized distributions. We believe that understanding the mechanics of the

alignment with this toy example is important for the analysis and further development

of domain-adversarial methods.

A.8 Experiment Details

A.8.1 Fixed Generator Matching Experiment

We provide additional results on fixed generator matching problem for WGANGP,

LSGAN, and RaSGAN not shown in the main text. Figure A-1 shows trajectory of 𝛼

over the course of training for all models.

For each model, we train all parameters of discriminator and the single parameter

𝛼 of the re-parameterized generator with SGD for 50 000 steps. We use mini-batches

of size 128. Table A.1 provides learning rates used for each model. We used the same

learning rates for PairSGAN, SGAN, WGAN-GP, and XORGAN. We adjusted the

learning rates for LSGAN, RSGAN, and RaSGAN to ensure comparable convergence

rates relative to other models. For WGAN-GP we set gradient penalty regularizer

parameter 𝜆 = 10 and perform 𝑛D = 5 discriminator updated per generator update.

220

0 10000 20000 30000 40000 50000

steps

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

α

PairSGAN

0 10000 20000 30000 40000 50000

steps

−3

−2

−1

0

1

2

3

α

SGAN

0 10000 20000 30000 40000 50000

steps

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

α

WGAN-GP

0 10000 20000 30000 40000 50000

steps

−6

−4

−2

0

2

4

6

α

LSGAN

0 10000 20000 30000 40000 50000

steps

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

α

RSGAN

0 10000 20000 30000 40000 50000

steps

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

α

RaSGAN

0 10000 20000 30000 40000 50000

steps

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

α

XORGAN

Figure A-1: Training curves for DCGAN generator re-parameterized with a single
parameter 𝛼.

Table A.1: Learning rates for discriminator (𝜂D) and 𝛼 (𝜂𝛼) for different GAN models

Model 𝜂D 𝜂𝛼

PairSGAN 0.004 0.32
SGAN 0.004 0.32
WGAN-GP 0.004 0.32
LSGAN 0.000032 0.16
RSGAN 0.001 0.1
RaSGAN 0.001 0.1
XORGAN 0.004 0.32

For all models we use the standard DCGAN architecture for the generator. We

use the standard DCGAN discriminator architecture for all models relying on unary

discriminators: unary GAN models (SGAN, WGAN-GP, LSGAN), relativistic GANs

(RSGAN, RaSGAN), and XORGAN. For PairGAN we use the same pairwise discrimi-

221

nator architecture as in CIFAR-10 expereiments (see Section A.8.2).

A.8.2 Real World Datasets Experiment

In this section, we will describe in details two specific practical setups of PairGAN

that we experiment with on the real world datasets, namely one for CIFAR-10 [130]

and another for CAT [276].

CIFAR-10 One way to parameterize a pairwise discriminator is 𝐷(𝑥, 𝑦) =

𝐷𝑏([𝐷𝑢(𝑥), 𝐷𝑢(𝑦)]), where 𝐷𝑢(·) is the DCGAN unary discriminator that takes a

single image as an input and returns a multi-dimensional output instead of just one-

dimensional. 𝐷𝑏([·, ·]) is a fully connected network that takes the concatenation of the

two 𝐷𝑢(·) output as input and returns a single scalar.

With this setup, we train the discriminator and the generator with the following

mini-batch estimators3 of the PairSGAN loss:

̃︀ℒ𝐷 =
1

𝑁

𝑁∑︁
𝑖=1

[︁
− log𝐷(𝑢1𝑖 , 𝑢

2
𝑖)− log𝐷(𝑣1𝑖 , 𝑣

2
𝑖)− log(1−𝐷(𝑢1𝑖 , 𝑣

2
𝑖))− log(1−𝐷(𝑣1𝑖 , 𝑢

2
𝑖))
]︁

̃︀ℒ𝐺 =
1

𝑁

𝑁∑︁
𝑖=1

[︁
log𝐷(𝑣1𝑖 , 𝑣

2
𝑖)− log𝐷(𝑢1𝑖 , 𝑣

2
𝑖)− log𝐷(𝑣1𝑖 , 𝑢

2
𝑖)
]︁
,

(A.12)

where {𝑢1𝑖 , 𝑢2𝑖 }𝑁𝑖=1 and {𝑣1𝑖 , 𝑣2𝑖 }𝑁𝑖=1 denote real and generated samples respectively.

For both generator and 𝐷𝑢, we set the number of features to be 64. The output

dimension of 𝐷𝑢 is 128 and 𝐷𝑏 is a 2-hidden-layer fully-connected network with residual

connections [91] and LeakyReLU activation function.

CAT Note that the ideal pairwise discriminator for PairGAN should be symmetric,

meaning that the order of the pair should not matter (𝐷(𝑥, 𝑦) = 𝐷(𝑦, 𝑥)). From

this observation, we parameterize the pairwise discriminator differently as 𝐷(𝑥, 𝑦) =

𝐷𝑏(𝐷𝑢(𝑥) +𝐷𝑢(𝑦)) [269] where 𝐷𝑢 is the same as the one we used in CIFAR-10, but

𝐷𝑏 is now a binary network that takes in the addition of two 𝐷𝑢 output and returns
3We omit log𝐷(𝑢1𝑖 , 𝑢

2
𝑖) term from the estimator of the generator loss, since the generator does

not receive gradient from this term as it involves only real samples.

222

a single scalar. With this setup, the discriminator is innately symmetric and the

discriminator and generator’s corresponding losses in this case will be:

̃︀ℒ𝐷 =
1

𝑁

𝑁∑︁
𝑖=1

[︁
− log𝐷(𝑢1𝑖 , 𝑢

2
𝑖)− log𝐷(𝑣1𝑖 , 𝑣

2
𝑖)− 2 · log(1−𝐷(𝑢3𝑖 , 𝑣

3
𝑖))
]︁

̃︀ℒ𝐺 =
1

𝑁

𝑁∑︁
𝑖=1

[︁
log𝐷(𝑣1𝑖 , 𝑣

2
𝑖)− 2 · log𝐷(𝑢3𝑖 , 𝑣

3
𝑖)
]︁
,

(A.13)

However, with real world datasets (CAT in this case), we find the use of below

techniques to be beneficial for training.

• Averaging: Inspired by averaging technique used in relativistic GANs [114],

we introduce averaging-based version of pairwise discriminator. Given a single

sample 𝑥 and a mini-batch of 𝑁 samples 𝑌 = {𝑦𝑖}𝑁𝑖=1, the output of the

discriminator is computed as

𝐷(𝑥, 𝑌) = 𝐷𝑏

(︁
𝐷𝑢(𝑥) + 𝑒 · 1

𝑑 ·𝑁
𝑁∑︁
𝑖=1

𝑑∑︁
𝑗=1

[𝐷𝑢(𝑦𝑖)]𝑗

)︁
,

where 𝑑 denotes output dimension of 𝐷𝑢(·) and 𝑒 = [1, . . . , 1]𝑇 ∈ R𝑑.

With the modified discriminator 𝐷, we re-write the estimators (A.13) as

̃︀ℒ𝐷 =
1

𝑁

𝑁∑︁
𝑖=1

[︁
− log𝐷(𝑢1𝑖 , 𝑈

2)− log𝐷(𝑣1𝑖 , 𝑉
2)− 2 · log(1−𝐷(𝑢3𝑖 , 𝑉

3))
]︁
,

̃︀ℒ𝐺 =
1

𝑁

𝑁∑︁
𝑖=1

[︁
log𝐷(𝑣1𝑖 , 𝑉

2)− 2 · log𝐷(𝑢3𝑖 , 𝑉
3)
]︁
,

(A.14)

where 𝑈 𝑗 = {𝑢𝑗𝑖}𝑁𝑖=1, 𝑉 𝑗 = {𝑣𝑗𝑖 }𝑁𝑖=1, 𝑗 ∈ {1, 2, 3}.

• Annealing: We start training with a different generator loss function for the

generator and gradually anneal to the loss described above. The annealed loss

function for the generator is given by:

ℒ𝐺 =
1

𝑁

𝑁∑︁
𝑖=1

[︁
𝛼·
(︁
−log(1−𝐷(𝑣1𝑖 , 𝑉

2))
)︁

+(1−𝛼)·
(︁

log𝐷(𝑣1𝑖 , 𝑉
2)
)︁
−2·log𝐷(𝑢3𝑖 , 𝑉

3)
]︁
,

223

the annealing coefficient 𝛼 changes from 1 to 0 as a function of the step counter

𝑖 = 1, 2, . . .

𝛼𝑖 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, 𝑖 < 𝑛1

1− 𝑖−𝑛1

𝑛2
, 𝑛1 ≤ 𝑖 < 𝑛1 + 𝑛2

0, 𝑖 ≥ 𝑛1 + 𝑛2

For 64x64 and 128x128 resolutions, we set the number of features to be 64

and 32 for 256x256 resolution (the same as in the baselines provided by Jolicoeur-

Martineau [114]) For all resolutions, the output dimension of 𝐷𝑢 is 2 and 𝐷𝑏

is a 1-hidden-layer fully-connected network with SELU activation function [125]:

𝐷𝑏(𝑥) = FC16→1(SELU(FC2→16(𝑥))). Additionally, we use the annealing period of

𝑛1 + 𝑛2 = 1000 steps with 𝑛1 = 𝑛2 = 500. Since there are only about 2000 training

images for resolution 256x256, the mode collapse problem is severe with the vanilla

versions of all models (our model and the baselines). Thus, for CAT 256×256 we adopt

PacGAN2 [147] architecture for the discriminator, which is the same modification

done for all the corresponding baselines in Jolicoeur-Martineau [114].

For all real world datasets experiment, We train PairSGAN with Adam [121] using

one step of discriminator per generator step. We use the same standard setting of

hyperparameters (also the same in baseline models): learning rate 0.0002, 𝛽1 = 0.5,

𝛽2 = 0.999. We implement PairSGAN in PyTorch [189].

A.8.3 Examples

Figures A-2, A-3, and A-4 show samples generated by PairGAN trained on CAT

dataset for resolutions 64x64, 128x128, and 256x256 respectively. While we resize the

128x128 and 256x256 samples in order to fit the figures in one page, we provide the

original images in the code repository.

224

Figure A-2: Examples of 64× 64 CAT images generated with PairGAN

225

Figure A-3: Examples of 128× 128 CAT images generated with PairGAN

226

Figure A-4: Examples of 256× 256 CAT images generated with PairGAN

227

228

Appendix B

Adversarial Support Alignment

B.1 Proofs of the Theoretical Results

B.1.1 Proof of Proposition 4.2.1

1) 𝒟△(𝑝, 𝑞) ≥ 0 for all 𝑝, 𝑞 ∈ 𝒫 :

Since 𝑑(·, ·) ≥ 0, for all 𝑝, 𝑞,

SD(𝑝, 𝑞) := E𝑥∼𝑝[𝑑(𝑥, supp(𝑞))] = E𝑥∼𝑝
[︂

inf
𝑦∈supp(𝑞)

𝑑(𝑥, 𝑦)

]︂
≥ 0, (B.1)

which makes 𝒟△(𝑝, 𝑞) = SD(𝑝, 𝑞) + SD(𝑞, 𝑝) ≥ 0.

2) 𝒟△(𝑝, 𝑞) = 0 if and only if supp(𝑝) = supp(𝑞):

With statement 1, 𝒟△(𝑝, 𝑞) = 0 if and only if SD(𝑝, 𝑞) = 0 and SD(𝑞, 𝑝) = 0.

Then,

SD(𝑝, 𝑞) = 0 =⇒ E𝑥∼𝑝[𝑑(𝑥, supp(𝑞))] = 0 =⇒ 𝑝 ({𝑥|𝑑(𝑥, supp(𝑞)) > 0}) = 0.

This is equivalent to

∀𝑥 ∈ supp(𝑝), 𝑑(𝑥, supp(𝑞)) = 0.

229

Thus, supp(𝑝) ⊆ supp(𝑞), and similarly, supp(𝑞) ⊆ supp(𝑝), which makes

supp(𝑝) = supp(𝑞).

B.1.2 Assumption and Proof of Theorem 4.2.2

Comments on Assumption (4.3)

Assumption (4.3) is not restrictive. Indeed, distributions satisfying Assumption (4.3)

include:

• uniform 𝑝(𝑥) = 𝑈(𝑥; [𝑎, 𝑏]);

• truncated normal;

• 𝑝(𝑥) of the form

𝑝(𝑥) =

⎧⎪⎨⎪⎩
1
𝑍𝑝
𝑒−𝐸𝑝(𝑥), 𝑥 ∈ supp(𝑝),

0, 𝑥 /∈ supp(𝑝),

with non-negative energy (unnormalized log-density) function 𝐸𝑝 : 𝒳 → [0,∞);

• mixture of any distributions satisfying Assumption (4.3), for instance the distribu-

tions shown in Figure 4-3 top-left are mixtures of truncated normal distributions

on [−2, 2].

Starting from arbitrary density 𝑝0(𝑥) with bounded support we can derive a density

𝑝(𝑥) satisfying Assumption (4.3) via density clipping and re-normalization

𝑝(𝑥) ∝ clip

(︂
𝑝0(𝑥),

[︂
1

𝐶 ′ , 𝐶
′
]︂)︂

,

for some 𝐶 ′ > 1.

Proof of Theorem 4.2.2

First, we show that 𝒟△(𝑝, 𝑞) = 0 implies 𝒟△(𝑓 *
♯𝑝, 𝑓

*
♯𝑞) = 0.

230

𝒟△(𝑝, 𝑞) = 0 implies supp(𝑝) = supp(𝑞). Then for any mapping 𝑓 : 𝒳 →
R, we have supp(𝑓♯𝑝) = supp(𝑓♯𝑞), which implies supp(𝑓 *

♯𝑝) = supp(𝑓 *
♯𝑞). Thus,

𝒟△(𝑓 *
♯𝑝, 𝑓

*
♯𝑞) = 0.

Now, we prove that 𝒟△(𝑓 *
♯𝑝, 𝑓

*
♯𝑞) = 0 implies 𝒟△(𝑝, 𝑞) = 0 by contradiction.

𝒟△(𝑓 *
♯𝑝, 𝑓

*
♯𝑞) = 0 implies the following:

E𝑡∼𝑓*♯𝑝
[︀
𝑑(𝑡, supp(𝑓 *

♯𝑞)
]︀

= 0, E𝑡∼𝑓*♯𝑞
[︀
𝑑(𝑡, supp(𝑓 *

♯𝑝)
]︀

= 0.

1) Suppose E𝑥∼𝑝[𝑑(𝑥, supp(𝑞))] > 0. This is only possible if 𝑝({𝑥 |𝑥 ∈ supp(𝑝) ∖
supp(𝑞)}) > 0. Since 𝑥 ∈ supp(𝑝) ∖ supp(𝑞) implies 𝑝(𝑥) > 0, 𝑞(𝑥) = 0, and for any

𝑥 ∈ supp(𝑝)∪ supp(𝑞), 𝑝(𝑥) > 0, 𝑞(𝑥) = 0 if and only if 𝑓 *(𝑥) = 𝑝(𝑥)
𝑝(𝑥)+𝑞(𝑥)

= 1, we have:

P𝑓*♯𝑝({1}) = P𝑝({𝑥 |𝑥 ∈ supp(𝑝) ∖ supp(𝑞)}) > 0,

and therefore 1 ∈ supp(𝑓 *
♯𝑝).

For a real number 𝛼 : 0 < 𝛼 < 1
𝐶2+1

, consider the probability of the event

(1− 𝛼, 1] ⊂ [0, 1] under distribution 𝑓 *
♯𝑞:

P𝑓*♯𝑞((1− 𝛼, 1]) = P𝑞({𝑥 | 𝑓 *(𝑥) ∈ (1− 𝛼, 1]}).

By assumption (4.3), 𝑝(𝑥) < 𝐶 and 𝑞(𝑥) > 0 implies 𝑞(𝑥) > 1
𝐶

, therefore for 𝑥 : 𝑞(𝑥) >

0 we have

𝑓 *(𝑥) =
𝑝(𝑥)

𝑝(𝑥) + 𝑞(𝑥)
<

𝑝(𝑥)

𝑝(𝑥) + 1
𝐶

<
𝐶

𝐶 + 1
𝐶

= 1− 1

𝐶2 + 1
< 1− 𝛼.

This means that P𝑓*♯𝑞((1− 𝛼, 1]) = 0, i.e. supp(𝑓 *
♯𝑞) ∩ (1− 𝛼, 1] = ∅.

To summarize, starting from the assumption that E𝑥∼𝑝[𝑑(𝑥, supp(𝑞))] > 0 we

showed that

• 1 ∈ supp(𝑓 *
♯𝑝), P𝑓*♯𝑝({1}) > 0;

• supp(𝑓 *
♯𝑞) ∩ (1− 𝛼, 1] = ∅.

231

Because 𝒟△(𝑓 *
♯𝑝, 𝑓

*
♯𝑞) ≥ E𝑡∼𝑓*♯𝑝

[︀
𝑑(𝑡, supp(𝑓 *

♯𝑞))
]︀
≥ P𝑓*♯𝑝({1}) · 𝑑(1, supp(𝑓 *

♯𝑞)) ≥
P𝑓*♯𝑝({1}) · 𝛼 > 0, which contradicts with the given 𝒟△(𝑓 *

♯𝑝, 𝑓
*
♯𝑞) = 0, we have

E𝑥∼𝑝[𝑑(𝑥, supp(𝑞))] = 0.

2) Similarly, it can be shown E𝑥∼𝑞[𝑑(𝑥, supp(𝑝))] = 0.

Thus, 𝒟△(𝑓 *
♯𝑝, 𝑓

*
♯𝑞) = 0 implies 𝒟△(𝑝, 𝑞) = 0.

B.1.3 Proof of Proposition 4.2.4

Consider a 1-dimensional Euclidean space R. Let supp(𝑝) = [−1
2
, 1
2
] ∪ [1, 2] with

𝑝([−1
2
, 1
2
]) = 3

4
and 𝑝([1, 2]) = 1

4
. Let supp(𝑞) = [−2,−1] ∪ [−1

2
, 1
2
] ∪ [1, 2] with

𝑞([−2,−1]) = 1
4
, 𝑞([−1

2
, 1
2
]) = 1

4
and 𝑞([1, 2]) = 1

2
. The supports of 𝑝 and 𝑞 consist

of disjoint closed intervals, and we assume uniform distribution within each of these

intervals, i.e. 𝑝 has density 𝑝(𝑥) = 3
4
,∀𝑥 ∈ [−1

2
, 1
2
]; 𝑝(𝑥) = 1

4
, ∀𝑥 ∈ [1, 2] and 𝑞 has

densitiy 𝑞(𝑥) = 1
4
,∀𝑥 ∈ [−2,−1]; 𝑞(𝑥) = 1

4
,∀𝑥 ∈ [−1

2
, 1
2
]; 𝑞(𝑥) = 1

2
,∀𝑥 ∈ [1, 2]. Clearly,

supp(𝑝) ̸= supp(𝑞).

The optimal dual Wasserstein discriminator 𝑓 *
𝑊 is the maximizer of

sup
𝑓 :Lip(𝑓)≤1

E𝑥∼𝑝[𝑓(𝑥)]− E𝑦∼𝑞[𝑓(𝑦)].

Thus, 𝑓 *
𝑊 is the maximizer of

sup
𝑓 :Lip(𝑓)≤1

1

4

(︃
3

∫︁ 1
2

− 1
2

𝑓(𝑥)𝑑𝑥+

∫︁ 2

1

𝑓(𝑥)𝑑𝑥−
∫︁ −1

−2

𝑓(𝑥)𝑑𝑥−
∫︁ 1

2

− 1
2

𝑓(𝑥)𝑑𝑥− 2

∫︁ 2

1

𝑓(𝑥)𝑑𝑥

)︃
,

which simplifies to

sup
𝑓 :Lip(𝑓)≤1

1

4

(︃
−
∫︁ −1

−2

𝑓(𝑥)𝑑𝑥+ 2

∫︁ 1
2

− 1
2

𝑓(𝑥)𝑑𝑥−
∫︁ 2

1

𝑓(𝑥)𝑑𝑥

)︃
.

Since the optimization objective and the constraint are invariant to replacing

the function 𝑓(𝑥) with its symmetric reflection 𝑔(𝑥) = 𝑓(−𝑥), if 𝑓 ′ is a optimal

solution, then there exists a symmetric maximizer 𝑓 *
𝑊 (𝑥) = 1

2
𝑓 ′(𝑥) + 1

2
𝑓 ′(−𝑥), since

𝑓 *
𝑊 (𝑥) = 𝑓 *

𝑊 (−𝑥) and Lip(𝑓 *
𝑊) ≤ Lip(𝑓 ′) ≤ 1. Thus, supp(𝑓 ⋆𝑊 ♯𝑝) = supp(𝑓 ⋆𝑊 ♯𝑞) as

232

𝑓 *
𝑊 (𝑥) = 𝑓 *

𝑊 (−𝑥) for 𝑥 ∈ [1, 2].

Note that one can easily “extend” the above proof to discrete distributions, by

replacing the disjoint segments [−2,−1], [−1
2
, 1
2
], [1, 2] with points {−1}, {0}, {1}.

B.1.4 Proof of Proposition 4.4.1

We assume that supports supp(𝑝) and supp(𝑞) are compact, 𝑝 and 𝑞 have continuous

densities on 𝒳 = R𝑛 and 𝑑(𝑥, 𝑦) is a continuous metric function.

From (4.9), we have

𝒟𝛽𝑊 (𝑝, 𝑞) = inf
𝛾∈Γ𝛽(𝑝,𝑞)

E(𝑥,𝑦)∼𝛾[𝑑(𝑥, 𝑦)],

where Γ𝛽(𝑝, 𝑞) is the set of all mesaures 𝛾 on 𝒳 × 𝒳 that satisfy

∫︁
𝛾(𝑥, 𝑦) 𝑑𝑦 = 𝑝(𝑥), ∀𝑥, (B.2)∫︁
𝛾(𝑥, 𝑦) 𝑑𝑥 ≤ (1 + 𝛽)𝑞(𝑦), ∀ 𝑦. (B.3)

Below we show that lim𝛽→∞𝒟𝛽𝑊 (𝑝, 𝑞) = E𝑥∼𝑝[𝑑(𝑥, supp(𝑞))] = 𝑆𝐷(𝑝, 𝑞) (B.1).

First observe that for any 𝑥 ∈ supp(𝑝), 𝑦 ∈ supp(𝑞) we have 𝑑(𝑥, 𝑦) ≥
𝑑(𝑥, supp(𝑞)) = inf𝑦∈supp(𝑞) 𝑑(𝑥, 𝑦). Therefore,

𝒟𝛽𝑊 (𝑝, 𝑞) = inf
𝛾∈Γ𝛽(𝑝,𝑞)

E(𝑥,𝑦)∼𝛾[𝑑(𝑥, 𝑦)] (B.4)

≥ inf
𝛾∈Γ𝛽(𝑝,𝑞)

E(𝑥,𝑦)∼𝛾[𝑑(𝑥, supp(𝑞))] = E𝑥∼𝑝[𝑑(𝑥, supp(𝑞))] = 𝑆𝐷(𝑝, 𝑞). (B.5)

Let 𝐹 (𝑥) denote the function 𝐹 (𝑥) = 𝑑(𝑥, supp(𝑞)) = inf𝑦∈supp(𝑞) 𝑑(𝑥, 𝑦). Let 𝐵𝑟(𝑥)

denote the ball centered at 𝑥 with radius 𝑟: 𝐵𝑟(𝑥) = {𝑦 | 𝑑(𝑥, 𝑦) ≤ 𝑟}. For 𝛽 ≥ 0 let

𝑠𝛽(𝑥) be a function that for a given point 𝑥 is defined through the constraint

𝑠𝛽(𝑥) : 𝑞(𝐵𝐹 (𝑥)+𝑠𝛽(𝑥)(𝑥)) =
1

1 + 𝛽
. (B.6)

Since supp(𝑞) is bounded, by construction 𝑠𝛽(𝑥) is bounded for all 𝑥, 𝑠𝛽′(𝑥) < 𝑠𝛽(𝑥)

233

for 𝛽′ > 𝛽, and lim𝛽→∞ 𝑠𝛽(𝑥) = 0.

For 𝛽 ≥ 0 we construct distributions 𝛾𝛽 on 𝒳 × 𝒳 as

𝛾𝛽(𝑥, 𝑦) = (1 + 𝛽)𝑝(𝑥)𝑞(𝑦) 𝐼[𝑦 ∈ 𝐵𝐹 (𝑥)+𝑠𝛽(𝑥)(𝑥)], (B.7)

where 𝐼[·] is the indicator function.

For 𝛾𝛽(𝑥, 𝑦) we have

∫︁
𝛾𝛽(𝑥, 𝑦) 𝑑𝑦 = (1 + 𝛽)𝑝(𝑥)𝑞(𝐵𝐹 (𝑥)+𝑠𝛽(𝑥)(𝑥)) = 𝑝(𝑥), (B.8)

∫︁
𝛾𝑛(𝑥, 𝑦) 𝑑𝑥 = (1 + 𝛽)𝑞(𝑦)

∫︁
𝑝(𝑥)𝐼[𝑦 ∈ 𝐵𝐹 (𝑥)+𝑠𝛽(𝑥)(𝑥)] 𝑑𝑥 ≤ (1 + 𝛽) 𝑞(𝑦). (B.9)

Thus, 𝛾𝛽 ∈ Γ𝛽(𝑝, 𝑞). Moreover, for 𝛾𝛽 we have

E𝑥,𝑦∼𝛾𝛽 [𝑑(𝑥, 𝑦)] =

∫︁
(1 + 𝛽)𝑝(𝑥)𝑞(𝑦) 𝐼[𝑦 ∈ 𝐵𝐹 (𝑥)+𝑠𝛽(𝑥)(𝑥)]𝑑(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

≤
∫︁

(1 + 𝛽)𝑝(𝑥)𝑞(𝑦)𝐼[𝑦 ∈ 𝐵𝐹 (𝑥)+𝑠𝛽(𝑥)(𝑥)](𝐹 (𝑥) + 𝑠𝛽(𝑥)) 𝑑𝑥 𝑑𝑦

=

∫︁
(1 + 𝛽)𝑝(𝑥)(𝐹 (𝑥) + 𝑠𝛽(𝑥))

(︂∫︁
𝑞(𝑦)𝐼[𝑦 ∈ 𝐵𝐹 (𝑥)+𝑠𝛽(𝑥)(𝑥)] 𝑑𝑦

)︂
𝑑𝑥

=

∫︁
𝑝(𝑥)(𝐹 (𝑥) + 𝑠𝛽(𝑥)) 𝑑𝑥

= E𝑥∼𝑝[𝑑(𝑥, supp 𝑞)] +

∫︁
𝑝(𝑥)𝑠𝛽(𝑥) 𝑑𝑥

= 𝑆𝐷(𝑝, 𝑞) +

∫︁
𝑝(𝑥)𝑠𝛽(𝑥) 𝑑𝑥. (B.10)

Combining (B.5) and (B.10) we have

𝑆𝐷(𝑝, 𝑞) ≤ lim
𝛽→∞

𝐷𝛽
𝑊 (𝑝, 𝑞) (B.11)

lim
𝛽→∞

𝐷𝛽
𝑊 (𝑝, 𝑞) ≤ lim

𝛽→∞
E𝑥,𝑦∼𝛾𝛽 [𝑑(𝑥, 𝑦)] ≤ 𝑆𝐷(𝑝, 𝑞) + lim

𝛽→∞

∫︁
𝑝(𝑥)𝑠𝛽(𝑥) 𝑑𝑥. (B.12)

We can see that lim𝛽→∞
∫︀
𝑝(𝑥)𝑠𝛽(𝑥) 𝑑𝑥 = 0. Indeed, since lim𝛽→∞ 𝑠𝛽(𝑥) = 0 ∀𝑥,

234

𝑠𝛽(𝑥)→ 0 by measure. Then, for any 𝜀 > 0

∫︁
𝑝(𝑥)𝑠𝛽(𝑥) 𝑑𝑥 =

∫︁
𝐼[𝑠𝛽(𝑥) < 𝜀]𝑝(𝑥)𝑠𝛽(𝑥) 𝑑𝑥+

∫︁
𝐼[𝑠𝛽(𝑥) ≥ 𝜀]𝑝(𝑥)𝑠𝛽(𝑥) 𝑑𝑥 (B.13)

≤ 𝜀

∫︁
𝑝(𝑥) 𝑑𝑥+

(︃
sup

𝑥∈supp(𝑝)
𝑠𝛽(𝑥)

)︃
𝑝({𝑥 : 𝑠𝛽(𝑥) > 𝜀}) (B.14)

≤ 𝜀+

(︃
sup

𝑥∈supp(𝑝)
𝑠𝛽(𝑥)

)︃
𝑝({𝑥 : 𝑠𝛽(𝑥) > 𝜀}), (B.15)

where the second term can be made smaller than 𝜀 by choosing large enough 𝛽 since

sup𝑥∈supp(𝑝) 𝑠𝛽(𝑥) is finite (𝑠𝛽(𝑥) is bounded) and the measure of the set 𝑝({𝑥 : 𝑠𝛽(𝑥) >

𝜀}) goes to 0 as 𝛽 →∞ (𝑠𝛽(𝑥) converges to zero by measure).

Now, we have shown that 𝑆𝐷(𝑝, 𝑞) = lim𝛽→∞𝐷𝛽
𝑊 (𝑝, 𝑞).

Then for 𝒟∞,∞
𝑊 (𝑝, 𝑞) := lim𝛽1,𝛽2→∞𝒟𝛽1,𝛽2𝑊 (𝑝, 𝑞), we have

𝒟∞,∞
𝑊 (𝑝, 𝑞) = 𝒟∞

𝑊 (𝑝, 𝑞) +𝒟∞
𝑊 (𝑞, 𝑝) = SD(𝑝, 𝑞) + SD(𝑞, 𝑝) = 𝒟△(𝑝, 𝑞),

which proves the proposition.

B.1.5 Proof of Proposition 4.4.2

1. 𝒟𝑊 (𝑝, 𝑞) = 0 implies 𝑝 = 𝑞, which is equivalent to

𝑝(𝑥)

𝑞(𝑥)
= 1, ∀𝑥 ∈ supp(𝑝) ∪ supp(𝑞).

Then clearly, for all finite 𝛽1, 𝛽2 > 0 it satisfies

1

1 + 𝛽2
≤ 𝑝(𝑥)

𝑞(𝑥)
≤ 1 + 𝛽1, ∀𝑥 ∈ supp(𝑝) ∪ supp(𝑞). (B.16)

Thus, 𝒟𝛽1,𝛽2𝑊 (𝑝, 𝑞) = 0 for all finite 𝛽1, 𝛽2 > 0.

2. 𝒟𝛽1,𝛽2𝑊 (𝑝, 𝑞) = 0 for some finite 𝛽1, 𝛽2 > 0 means that (B.16) is satisfied. This

implies that ∀𝑥 ∈ supp(𝑝), 𝑥 ∈ supp(𝑞) and ∀𝑥 ∈ supp(𝑞), 𝑥 ∈ supp(𝑝), which

makes supp(𝑝) = supp(𝑞). Thus, 𝒟△(𝑝, 𝑞) = 0.

235

3. The converse of statements 1 and 2 are false:

(a) For all finite 𝛽1, 𝛽2 > 0, let supp(𝑝) = supp(𝑞) = {𝑥1, 𝑥2}. Let 𝑝(𝑥1) =

𝑝(𝑥2) = 1/2 and 𝑞(𝑥1) = (1 + 𝛽′)/2 and 𝑞(𝑥2) = (1− 𝛽′)/2 where

𝛽′ = min

(︂
𝛽2, 1−

1

1 + 𝛽1

)︂
.

Then, it can be easily checked that (B.16) is satisfied, which makes

𝒟𝛽1,𝛽2𝑊 (𝑝, 𝑞) = 0. However, since 𝛽′ ̸= 0, 𝑝 ̸= 𝑞 and thus 𝒟𝑊 (𝑝, 𝑞) ̸= 0.

(b) Similar to (a), let supp(𝑝) = supp(𝑞) = {𝑥1, 𝑥2}. Let 𝑝(𝑥1) = 𝑞(𝑥2) = 𝜀

and 𝑝(𝑥2) = 𝑞(𝑥1) = 1 − 𝜀 for some 𝜀 > 0. Since supp(𝑝) = supp(𝑞),

𝒟△(𝑝, 𝑞) = 0. However,

lim
𝜀↓0

𝑝(𝑥1)

𝑞(𝑥1)
= lim

𝜀↓0

𝜀

1− 𝜀 = 0,

and, thus, for any finite 𝛽2 > 0 we can choose 𝜀 > 0 such that

𝑝(𝑥1)

𝑞(𝑥1)
=

𝜀

1− 𝜀 <
1

1 + 𝛽2
.

Therefore, (B.16) is not satisfied and 𝒟𝛽1,𝛽2𝑊 (𝑝, 𝑞) ̸= 0.

B.1.6 Proof of Proposition 4.4.4

For any point 𝑡 ∈ supp(𝑓 *
♯𝑝) ∪ supp(𝑓 *

♯𝑞), the values of the densities

[𝑓 *
♯𝑝](𝑡) = lim

𝜀↓0

P𝑝 ({𝑥 | 𝑡− 𝜀 < 𝑓 *(𝑥) < 𝑡+ 𝜀})
2𝜀

= lim
𝜀↓0

∫︀
{𝑥|𝑡−𝜀<𝑓*(𝑥)<𝑡+𝜀} 𝑝(𝑥) 𝑑𝑥

2𝜀
,

[𝑓 *
♯𝑞](𝑡) = lim

𝜀↓0

P𝑞 ({𝑥 | 𝑡− 𝜀 < 𝑓 *(𝑥) < 𝑡+ 𝜀})
2𝜀

= lim
𝜀↓0

∫︀
{𝑥|𝑡−𝜀<𝑓*(𝑥)<𝑡+𝜀} 𝑞(𝑥) 𝑑𝑥

2𝜀
.

Note that for all 𝑥 : 𝑡− 𝜀 < 𝑓 *(𝑥) < 𝑡+ 𝜀 we have

𝑡− 𝜀 < 𝑝(𝑥)

𝑝(𝑥) + 𝑞(𝑥)
< 𝑡+ 𝜀,

236

which implies

(𝑡− 𝜀)(𝑝(𝑥) + 𝑞(𝑥)) < 𝑝(𝑥) < (𝑡+ 𝜀)(𝑝(𝑥) + 𝑞(𝑥)).

Since these inequalities hold for all 𝑥 : 𝑡−𝜀 < 𝑓 *(𝑥) < 𝑡+𝜀, the similar relationship

holds for the integrals:

(𝑡− 𝜀)
∫︁
{𝑥|𝑡−𝜀<𝑓*(𝑥)<𝑡+𝜀}

(𝑝(𝑥) + 𝑞(𝑥)) 𝑑𝑥

<

∫︁
{𝑥|𝑡−𝜀<𝑓*(𝑥)<𝑡+𝜀}

𝑝(𝑥) 𝑑𝑥 <

(𝑡+ 𝜀)

∫︁
{𝑥|𝑡−𝜀<𝑓*(𝑥)<𝑡+𝜀}

(𝑝(𝑥) + 𝑞(𝑥)) 𝑑𝑥.

The ratio [𝑓 *
♯𝑝](𝑡)/([𝑓

*
♯𝑝](𝑡) + [𝑓 *

♯𝑞](𝑡)) can be expressed as

[𝑓 *
♯𝑝](𝑡)

[𝑓 *
♯𝑝](𝑡) + [𝑓 *

♯𝑞](𝑡)
= lim

𝜀↓0

∫︀
{𝑥|𝑡−𝜀<𝑓*(𝑥)<𝑡+𝜀} 𝑝(𝑥) 𝑑𝑥∫︀

{𝑥|𝑡−𝜀<𝑓*(𝑥)<𝑡+𝜀}(𝑝(𝑥) + 𝑞(𝑥)) 𝑑𝑥
.

Using the inequality above we observe that

𝑡− 𝜀 <
∫︀
{𝑥|𝑡−𝜀<𝑓*(𝑥)<𝑡+𝜀} 𝑝(𝑥) 𝑑𝑥∫︀

{𝑥|𝑡−𝜀<𝑓*(𝑥)<𝑡+𝜀}(𝑝(𝑥) + 𝑞(𝑥)) 𝑑𝑥
< 𝑡+ 𝜀,

for all 𝜀 > 0, and taking the limit 𝜀 ↓ 0 we obtain

[𝑓 *
♯𝑝](𝑡)

[𝑓 *
♯𝑝](𝑡) + [𝑓 *

♯𝑞](𝑡)
= 𝑡.

B.1.7 Proof of Proposition 4.4.3

Proof of Proposition 4.4.3, statement #1.

=⇒: If 𝒟𝑊 (𝑝, 𝑞) = 0 then 𝑝 = 𝑞, then 𝑓 *
♯𝑝 = 𝑓 *

♯𝑞. Thus, 𝒟𝑊 (𝑓 *
♯𝑝, 𝑓

*
♯𝑞) = 0.

⇐=: If 𝒟𝑊 (𝑓 *
♯𝑝, 𝑓

*
♯𝑞) = 0, then 𝑓 *

♯𝑝 = 𝑓 *
♯𝑞.

237

Consider probability of event
{︀
𝑡
⃒⃒
𝑡 > 1

2

}︀
under distribution 𝑓 *

♯𝑝.

P𝑓*♯𝑝
(︂{︂

𝑡

⃒⃒⃒⃒
𝑡 >

1

2

}︂)︂
=

∫︁
I
[︂
𝑓 *(𝑥) >

1

2

]︂
𝑝(𝑥) 𝑑𝑥,

where I[·] is the indicator function (I[𝑐] equal to 1 when the condition 𝑐 is satisfied,

and equal to 0 otherwise). For all 𝑥 : 𝑝(𝑥) > 0, we have that 𝑓 *(𝑥) = 𝑝(𝑥)
𝑝(𝑥)+𝑞(𝑥)

and

𝑝(𝑥) + 𝑞(𝑥) > 0. Therefore, the expression above can be re-written as

P𝑓*♯𝑝
(︂{︂

𝑡

⃒⃒⃒⃒
𝑡 >

1

2

}︂)︂
=

∫︁
I
[︂

𝑝(𝑥)

𝑝(𝑥) + 𝑞(𝑥)
>

1

2

]︂
𝑝(𝑥) 𝑑𝑥 =

∫︁
I[𝑝(𝑥)− 𝑞(𝑥) > 0]𝑝(𝑥) 𝑑𝑥.

Similarly, the probability of event
{︀
𝑡
⃒⃒
𝑡 > 1

2

}︀
under distribution 𝑓 *

♯𝑞 is

P𝑓*♯𝑞
(︂{︂

𝑡

⃒⃒⃒⃒
𝑡 >

1

2

}︂)︂
=

∫︁
I[𝑝(𝑥)− 𝑞(𝑥) > 0]𝑞(𝑥) 𝑑𝑥.

𝑓 *
♯𝑝 = 𝑓 *

♯𝑞 implies that

P𝑓*♯𝑝
(︂{︂

𝑡

⃒⃒⃒⃒
𝑡 >

1

2

}︂)︂
= P𝑓*♯𝑞

(︂{︂
𝑡

⃒⃒⃒⃒
𝑡 >

1

2

}︂)︂
,

or equivalently ∫︁
I[𝑝(𝑥)− 𝑞(𝑥) > 0](𝑝(𝑥)− 𝑞(𝑥)) 𝑑𝑥 = 0.

Note, that the function I[𝑝(𝑥)− 𝑞(𝑥) > 0](𝑝(𝑥)− 𝑞(𝑥)) is non-negative for any 𝑥. This

means that the integral can be zero only if the function is zero everywhere implying

that for any 𝑥 either I[𝑝(𝑥)− 𝑞(𝑥) > 0] = 0 or 𝑝(𝑥)− 𝑞(𝑥) = 0. In other words,

𝑝(𝑥) ≤ 𝑞(𝑥), ∀𝑥.

Using the fact the both densities 𝑝(𝑥) and 𝑞(𝑥) must sum up to 1, we conclude that

𝑝 = 𝑞 and 𝒟𝑊 (𝑝, 𝑞) = 0.

Proof of Proposition 4.4.3, statement #2.

238

Note that by (4.2) and (4.11), we have

𝑓 *(𝑥) =
𝑝(𝑥)

𝑝(𝑥) + 𝑞(𝑥)
= 𝑡 =

[𝑓 *
♯𝑝](𝑡)

[𝑓 *
♯𝑝](𝑡) + [𝑓 *

♯𝑞](𝑡)
, ∀𝑥 ∈ supp(𝑝) ∪ supp(𝑞).

=⇒: Suppose 𝒟𝛽1,𝛽2𝑊 (𝑝, 𝑞) = 0. Then supp(𝑝) = supp(𝑞) = 𝑆 (by Proposition 4.4.2)

and supp(𝑓 *
♯𝑝) = supp(𝑓 *

♯𝑞) = 𝑇 by (Theorem 4.2.2). Moreover, 𝒟𝛽1,𝛽2𝑊 (𝑝, 𝑞) = 0

implies
1

1 + 𝛽2
≤ 𝑝(𝑥)

𝑞(𝑥)
≤ 1 + 𝛽1, ∀𝑥 ∈ 𝑆.

Since

𝑓 *(𝑥) =
𝑝(𝑥)

𝑝(𝑥) + 𝑞(𝑥)
=

𝑝(𝑥)
𝑞(𝑥)

1 + 𝑝(𝑥)
𝑞(𝑥)

, ∀𝑥 ∈ 𝑆,

the inequalities above are equivalent to

1

2 + 𝛽2
≤ 𝑓 *(𝑥) ≤ 1 + 𝛽1

2 + 𝛽1
, ∀𝑥 ∈ 𝑆.

Combined with Proposition 4.4.4, the above implies that

1

2 + 𝛽2
≤ [𝑓 *

♯𝑝](𝑡)

[𝑓 *
♯𝑝](𝑡) + [𝑓 *

♯𝑞](𝑡)
≤ 1 + 𝛽1

2 + 𝛽1
, ∀𝑡 ∈ 𝑇,

or equivalently
1

1 + 𝛽2
≤ [𝑓 *

♯𝑝](𝑡)

[𝑓 *
♯𝑞](𝑡)

≤ 1 + 𝛽1, ∀𝑡 ∈ 𝑇.

Therefore, 𝒟𝛽1,𝛽2𝑊 (𝑓 *
♯𝑝, 𝑓

*
♯𝑞) = 0.

⇐=: similarly, when 𝒟𝛽1,𝛽2𝑊 (𝑓 *
♯𝑝, 𝑓

*
♯𝑞) = 0,

supp(𝑓 *
♯𝑝) = supp(𝑓 *

♯𝑞) = 𝑇 =⇒ supp(𝑝) = supp(𝑞) = 𝑆.

239

Moreover,

1

1 + 𝛽2
≤ [𝑓 *

♯𝑝](𝑡)

[𝑓 *
♯𝑞](𝑡)

≤ 1 + 𝛽1, ∀𝑡 ∈ 𝑇,

⇓
1

2 + 𝛽2
≤ [𝑓 *

♯𝑝](𝑡)

[𝑓 *
♯𝑝](𝑡) + [𝑓 *

♯𝑞](𝑡)
≤ 1 + 𝛽1

2 + 𝛽2
, ∀𝑡 ∈ 𝑇

⇓
1

2 + 𝛽2
≤ 𝑓 *(𝑥) ≤ 1 + 𝛽1

2 + 𝛽1
, ∀𝑥 ∈ 𝑆,

⇓
1

1 + 𝛽2
≤ 𝑝(𝑥)

𝑞(𝑥)
≤ 1 + 𝛽1, ∀𝑥 ∈ 𝑆.

Therefore, 𝒟𝛽1,𝛽2𝑊 (𝑝, 𝑞) = 0.

B.2 Discussion of “Soft” and “Hard” Assignments

with 1D Discrete Distributions

In Section 4.4.2 we considered the “soft-assignment” relaxed OT problem (4.13) and

claimed that for integer 𝛽, the set of minimizers of (4.13) must contain a “hard-

assignment” transportation plan, meaning 𝛾𝑖𝑗 ∈ {0, 1},∀𝑖, 𝑗. Below we justify this

claim.

Note that for 𝛽 = 0 the OT problem (4.13) is the standard OT problem for

Wasserstein-1 distance (4.12), since the inequality constraints
∑︀𝑚

𝑖=1 𝛾𝑖𝑗 ≤ 1, ∀𝑗 can

only be satisfied as equalities. For this problem, it is known (e.g. see [197] Proposition

2.1) that the set of optimal “soft-assignment” contains a “hard-assignment” represented

by a normalized permutation matrix. This fact can be proven using the Birkhoff–von

Neumann theorem. The Birkhoff–von Neumann theorem states that the set of doubly

240

stochastic matrices

𝑃 ∈ R𝑛×𝑛 : 𝑃𝑖𝑗 ≥ 0,∀ 𝑖, 𝑗,
𝑛∑︁
𝑗=1

𝑃𝑖𝑗 = 1,∀ 𝑖,
𝑛∑︁
𝑖=1

𝑃𝑖𝑗 = 1,∀ 𝑗

is exactly the set of all finite convex combinations of permutation matrices. In the

context of the linear program (4.13) with 𝛽 = 0, the Birkhoff–von Neumann theorem

means that all extreme points of the polyhedron Γ𝛽(𝑜𝑝, 𝑜𝑞) are hard-assignment

matrices. Therefore, by the fundamental theorem of linear programming [20], the

minimum of the objective is reached at a “hard-assignment” matrix.

We argue that a similar result holds for the case of integer 𝛽 > 0. In this case, the

matrices in Γ𝛽(𝑜𝑝, 𝑜𝑞) can not be associated with the doubly stochastic matrices, since

constraints on of the marginals of 𝛾 are relaxed to inequality constraints. Because

of that, the Birkhoff–von Neumann theorem can not be applied. However, Budish

et al. [34] provide a generalization of the Birkhoff–von Neumann theorem (Theorem 1

in [34]) which applies to the cases where the equality constraints are replaced with

integer-valued inequality constraints (recall that we consider integer 𝛽). Using this

generalized result, our claim can be proven by performing the following steps.

Clearly, the polyhedron Γ𝛽(𝑜𝑝, 𝑜𝑞) contains all “hard-assignment” matrices and all

their finite convex combinations. The result proven in [34] implies that each element

of Γ𝛽(𝑜𝑝, 𝑜𝑞) can be represented as a finite convex combination of “hard-assignment”

matrices. Thus, the polyhedron Γ𝛽(𝑜𝑝, 𝑜𝑞) is exactly the set of all finite convex

combinations of “hard-assignment” matrices and all extreme points of the polyhedron

are “hard-assignment” matrices. Finally, by analogy with the case of 𝛽 = 0, we invoke

the fundamental theorem of the linear programming and conclude that the minimum

of the objective (4.13) is reached at 𝛾 corresponding to a “hard-assignment” matrix.

B.3 Experiment Details

B.3.1 USPS to MNIST experiment specifications

We use USPS [104] and MNIST [140] datasets for this adaptation problem.

241

Following Tachet des Combes et al. [238] we use LeNet-like [140] architecture for

the feature extractor with the 500-dimensional feature representation. The classifier

consists of a single linear layer. The discriminator is implemented by a 3-layer MLP

with 512 hidden units and leaky-ReLU activation.

We train all methods for 65 000 steps with batch size 64. We train the feature

extractor, the classifier, and the discriminator with SGD (learning rate 0.02, momentum

0.9, weight decay 5 · 10−4). We perform a single discriminator update per 1 update of

the feature extractor and the classifier. After the first 30 000 steps we linearly anneal

the feature extractor’s and classifier’s learning rates for 30 000 steps to the final value

2 · 10−5.

The feature extractor’s loss is given by a weighted combination of the cross-entropy

classification loss on the labeled source example and a domain alignment loss computed

from the discriminator’s signal (recall that different method use different forms of the

alignment loss). The weight for the classification term is constant and set to 𝜆cls = 1.

We introduce schedule for the alignment weight 𝜆align. For all alignment methods we

linearly increase 𝜆align from 0 to 1.0 during the first 10000 steps.

For ASA we use history buffers of size 1000.

B.3.2 STL to CIFAR experiment specifications

We use STL [46] and CIFAR-10 [130] for this adaptation task. STL and CIFAR-10

are both 10-class classification problems. There are 9 common classes between the

two datasets. Following Shu et al. [225] we create a 9-class classification problem by

selecting the subsets of examples of the 9 common classes.

For the feature extractor, we adapt the deep CNN architecture of Shu et al. [225].

The feature representation is a 192-dimensional vector. The classifier consists of a

single linear layer. The discriminator is implemented by a 3-layer MLP with 512

hidden units and leaky-ReLU activation.

We train all methods for 40 000 steps with batch size 64. We train the feature

extractor, the classifier, and the discriminator with ADAM [120] (learning rate 0.001,

𝛽1 = 0.5, 𝛽2 = 0.999, no weight decay). We perform a single discriminator update per

242

1 update of the feature extractor and the classifier.

The weight for the classification loss term is constant and set to 𝜆cls = 1. For all

alignment methods we use constant alignment weight 𝜆align = 0.1.

For ASA we use history buffers of size 1000.

Conditional entropy loss. Following [225] we use auxiliary conditional entropy

loss on target examples for domain adaptation methods. For a classifier 𝐶𝜑 : 𝒵 → 𝒴
and a feature extractor 𝐹 𝜃 : 𝒳 → 𝒵 where classifier outputs the distribution over

class labels {1, . . . , 𝐾}

𝐶𝜑(𝑧) ∈ R𝐾 :
[︀
𝐶𝜑(𝑧)

]︀
𝑘
≥ 0,

𝐾∑︁
𝑘=1

[︀
𝐶𝜑(𝑧)

]︀
𝑘

= 1,

the conditional entropy loss on target examples {𝑥𝑞𝑖}
𝑁𝑞
𝑖=1 is given by

ℒent = 𝜆ent ·
1

𝑁 𝑞

𝑁𝑞∑︁
𝑖=1

(︃
−

𝐾∑︁
𝑘=1

[︀
𝐶𝜑(𝐹 𝜃(𝑥𝑞𝑖))

]︀
𝑘

log
[︀
𝐶𝜑(𝐹 𝜃(𝑥𝑞𝑖))

]︀
𝑘

)︃
. (B.17)

𝜆ent is the weight of the conditional entropy loss in the total training objective. This

loss acts as an additional regularization of the embeddings of the unlabeled target

examples: minimization of the conditional entropy pushes target embeddings away

from the classifier’s decision boundary.

For all domain adapation methods we use the conditional entropy loss (B.17) on

target examples with the weight 𝜆ent = 0.1.

B.3.3 VisDA-17 experiment specifications

We use train and validation sets of the VisDA-17 challenge [193].

For the feature extractor we use ResNet-50 [92] architecture with modified output

size of the final linear layer. The feature representation is 256-dimensional vector.

We use the weights from pre-trained ResNet-50 model (torchvision model hub) for

all layers except the final linear layer. The classifier consists of a single linear layer.

The discriminator is implemented by a 3-layer MLP with 1024 hidden units and

243

leaky-ReLU activation.

We train all methods for 50 000 steps with batch size 36. We train the feature

extractor, the classifier, and the discriminator with SGD. For the feature extractor

we use learning rate 0.001, momentum 0.9, weight decay 0.001. For the classifier we

use learning rate 0.01, momentum 0.9, weight decay 0.001. For the discriminator we

use learning rate 0.005, momentum 0.9, weight decay 0.001. We perform a single

discriminator update per 1 update of the feature extractor and the classifier. We

linearly anneal the feature extractor’s and classifier’s learning rate throughout the

training (50 000) steps. By the end of the training the learning rates of the feature

extractor and the classifier are decreased by a factor of 0.05.

The weight for the classification term is constant and set to 𝜆cls = 1. We introduce

schedule for the alignment weight 𝜆align. For all alignment methods we linearly increase

𝜆align from 0 to 0.1 during the first 10000 steps. For all methods we use auxiliary

conditional entropy loss on target examples with the weight 𝜆ent = 0.1.

For ASA we use history buffers of size 1000.

244

Appendix C

Compositional Sculpting of Iterative

Generative Processes

C.1 Classifier Guidance for Parameterized Opera-

tions

This section covers the details of classifier guidance and classifier training for the

parameterized operations (Section 5.4.1).

While in the probabilistic model (5.7) all observations 𝑦𝑖 are exchangeable, in the

parameterized model (5.12) 𝑦1 and 𝑦2 are not symmetric. This difference requires

changes in the classifier training algorithm for the parameterized operations.

We develop the method for the parameterized operations based on two observations:

• 𝑦1 appears in (5.12) in the same way as in (5.16)-(5.18);

• the likelihood ̃︀𝑝(𝑦2|𝑥;𝛼) of 𝑦2 given 𝑥 can be expressed as the function of ̃︀𝑝(𝑦1|𝑥)

and 𝛼:

̃︀𝑝(𝑦2 =1|𝑥;𝛼) =
𝛼𝑝1(𝑥)

𝛼𝑝1(𝑥) + (1− 𝛼)𝑝2(𝑥)
=

𝛼 𝑝1(𝑥)
𝑝1(𝑥)+𝑝2(𝑥)

𝛼 𝑝1(𝑥)
𝑝1(𝑥)+𝑝2(𝑥)

+ (1− 𝛼) 𝑝2(𝑥)
𝑝1(𝑥)+𝑝2(𝑥)

=
𝛼̃︀𝑝(𝑦1 =1|𝑥)

𝛼̃︀𝑝(𝑦1 =1|𝑥) + (1− 𝛼)̃︀𝑝(𝑦1 =2|𝑥)
,

(C.1a)

245

̃︀𝑝(𝑦2 =2|𝑥;𝛼) =
(1− 𝛼)𝑝2(𝑥)

𝛼𝑝1(𝑥) + (1− 𝛼)𝑝2(𝑥)
=

(1− 𝛼) 𝑝2(𝑥)
𝑝1(𝑥)+𝑝2(𝑥)

𝛼 𝑝1(𝑥)
𝑝1(𝑥)+𝑝2(𝑥)

+ (1− 𝛼) 𝑝2(𝑥)
𝑝1(𝑥)+𝑝2(𝑥)

=
(1− 𝛼)̃︀𝑝(𝑦1 =2|𝑥)

𝛼̃︀𝑝(𝑦1 =1|𝑥) + (1− 𝛼)̃︀𝑝(𝑦1 =2|𝑥)
.

(C.1b)

These two observations combined suggest the training procedure where 1) the

terminal state classifier is trained to approximate ̃︀𝑝(𝑦1 = 𝑖|𝑥) in the same way as in

Section 5.5.2; 2) the probability estimates 𝑤𝑖(̂︀𝑥, ̂︀𝛼;𝜑) ≈ ̃︀𝑝(𝑦2 = 𝑖; ̂︀𝛼) are expressed

through the learned terminal state classifier ̃︀𝑝(𝑦1 = 𝑖|𝑥) via (C.1). Below we provide

details of this procedure for the case of GFlowNet composition.

Learning the terminal state classifier. The marginal 𝑦1 classifier ̃︀𝑄𝜑(𝑦1|𝑥) is

learned by minimizing the cross-entropy loss

ℒ𝑇 (𝜑) = E
(̂︀𝑥,̂︀𝑦1)∼̃︀𝑝(𝑥,𝑦1)

[︁
− log ̃︀𝑄𝜑(𝑦1 =̂︀𝑦1|𝑥 = ̂︀𝑥)

]︁
. (C.2)

Then, the joint classifier ̃︀𝑄𝜑(𝑦1, 𝑦2|𝑥;𝛼) is constructed as

̃︀𝑄𝜑(𝑦1, 𝑦2|𝑥;𝛼) = ̃︀𝑄𝜑(𝑦1|𝑥) ̃︀𝑄𝜑(𝑦2|𝑥;𝛼), (C.3)

where ̃︀𝑄𝜑(𝑦2|𝑥;𝛼) can be expressed through the marginal ̃︀𝑄𝜑(𝑦1|𝑥) via (C.1).

Learning the non-terminal state classifier. The non-terminal state classifier̃︀𝑄(𝑦1, 𝑦2|𝑠;𝛼) models 𝑦1 and 𝑦2 jointly. Note that 𝛼 is one of the inputs to the classifier

model. Given a sampled trajectory ̂︀𝜏 , labels ̂︀𝑦1, ̂︀𝑦2, and ̂︀𝛼, the total cross-entropy loss

of all non-terminal states in 𝜏 is

ℓ(̂︀𝜏 , ̂︀𝑦1, ̂︀𝑦2, ̂︀𝛼;𝜑) =

|𝜏 |−1∑︁
𝑡=0

[︁
− log ̃︀𝑄𝜑(𝑦1 =̂︀𝑦1, 𝑦2 =̂︀𝑦2|𝑠=̂︀𝑠𝑡; ̂︀𝛼)

]︁
. (C.4)

The pairs (̂︀𝜏 , ̂︀𝑦1) can be generated via a sampling scheme similar to the one used

for the terminal state classifier loss above: 1) ̂︀𝑦1 ∼ ̃︀𝑝(𝑦1) and 2) ̂︀𝜏 ∼ 𝑝̂︀𝑦1(𝜏). An

246

approximation of the distribution of ̂︀𝑦2 given ̂︀𝜏 is constructed using (C.1):

𝑤1(̂︀𝑥, ̂︀𝛼;𝜑) =
̂︀𝛼 ̃︀𝑄𝜑(𝑦1 =1|𝑥=̂︀𝑥)̂︀𝛼 ̃︀𝑄𝜑(𝑦1 =1|𝑥=̂︀𝑥) + (1− ̂︀𝛼) ̃︀𝑄𝜑(𝑦1 =2|𝑥=̂︀𝑥)

≈ ̃︀𝑝(𝑦2 =1|𝑥 = ̂︀𝑥; ̂︀𝛼),

(C.5a)

𝑤2(�̂�, ̂︀𝛼;𝜑) =
(1− ̂︀𝛼) ̃︀𝑄𝜑(𝑦1 =2|𝑥 = ̂︀𝑥)̂︀𝛼 ̃︀𝑄𝜑(𝑦1 =1|𝑥 = ̂︀𝑥) + (1− ̂︀𝛼) ̃︀𝑄𝜑(𝑦1 =2|𝑥 = ̂︀𝑥)

≈ ̃︀𝑝(𝑦2 =2|𝑥 = ̂︀𝑥; ̂︀𝛼).

(C.5b)

Since these expressions involve outputs of the terminal state classifier which is being

trained simultaneously, we again (see Section 5.5.2) introduce the target network

parameters 𝜑 that are used to compute the probability estimates (C.5).

The training loss for the non-terminal state classifier is

ℒ𝑁(𝜑, 𝜑) = Ê︀𝛼∼𝑝(𝛼) E
(̂︀𝜏 ,̂︀𝑦1)∼̃︀𝑝(𝜏,𝑦1)

⎡⎣ 2∑︁
̂︀𝑦2=1

𝑤̂︀𝑦2(̂︀𝑥, ̂︀𝛼;𝜑)ℓ(̂︀𝜏 , ̂︀𝑦1, ̂︀𝑦2, ̂︀𝛼;𝜑)

⎤⎦ , (C.6)

where 𝑝(𝛼) is sampling distribution over 𝛼 ∈ (0, 1). In our experiments, we used the

following sampling scheme for 𝛼:

̂︀𝑧 ∼ 𝑈 [−𝐵,𝐵], ̂︀𝛼 =
1

1 + exp(−̂︀𝑧)
. (C.7)

C.2 Proof of Proposition 5.4.1

Without loss of generality, we prove the claims of the proposition assuming absolutely

continuous distributions 𝑝1, 𝑝2 with probability density functions 𝑝1(·), 𝑝2(·).

Claim 1. For any two distributions 𝑝1, 𝑝2 we have 𝑝1(𝑥) ≥ 0, 𝑝2(𝑥) ≥ 0,∫︀
𝒳 𝑝1(𝑥) 𝑑𝑥 =

∫︀
𝒳 𝑝2(𝑥) 𝑑𝑥 = 1 < ∞. Then, the RHS of the expression for the

parameterized contrast operation 𝑝1◑ (1−𝛼) 𝑝2 (5.13) satisfies

𝑝1(𝑥)2

𝛼𝑝1(𝑥) + (1− 𝛼)𝑝2(𝑥)
=
𝑝1(𝑥)

𝛼
· 𝑝1(𝑥)

𝑝1(𝑥) + (1−𝛼)
𝛼

𝑝2(𝑥)⏟ ⏞
≤1

≤ 𝑝1(𝑥)

𝛼
, (C.8)

247

∀𝑥 ∈ supp(𝑝1)∪supp(𝑝2). For points 𝑥 /∈ supp(𝑝1)∪supp(𝑝2), we set 𝑝1(𝑥)2

𝛼𝑝1(𝑥)+(1−𝛼)𝑝2(𝑥) =

0 since by construction the composite distributions do not have probability mass

outside of the union of the supports of the original distributions. The above implies

that ∫︁
𝒳

𝑝21(𝑥)

𝛼𝑝1(𝑥) + (1− 𝛼)𝑝2(𝑥)
𝑑𝑥 ≤ 1

𝛼

∫︁
𝒳
𝑝1(𝑥) 𝑑𝑥 =

1

𝛼
<∞. (C.9)

Therefore, the RHS of the expression for the parameterized contrast operation

𝑝1◑ (1−𝛼) 𝑝2 (5.13) can be normalized, and the distribution 𝑝1◑ (1−𝛼) 𝑝2 is well-

defined.

Claim 2. For any 𝛾 ∈ (0, 1) we provide an infinite collection of distribution pairs 𝑝1

and 𝑝2 such that negation 𝑝1 neg𝛾 𝑝2 results in a non-normalizable distribution.

For the given 𝛾 ∈ (0, 1) we select four numbers 𝜇1 ∈ R, 𝜇2 ∈ R, 𝜎1 > 0, 𝜎2 > 0

such that

𝜎2
1 ≥

1

𝛾
𝜎2
2, (C.10)

Consider univariate normal distributions 𝑝1(𝑥) = 𝒩 (𝑥;𝜇1, 𝜎
2
1), 𝑝2(𝑥) = 𝒩 (𝑥;𝜇2, 𝜎

2
2)

with density functions

𝑝𝑖(𝑥) = 𝒩 (𝑥;𝜇𝑖, 𝜎
2
𝑖) =

1√︀
2𝜋𝜎2

𝑖

exp

{︂
−(𝑥− 𝜇𝑖)2

2𝜎2
𝑖

}︂
, 𝑖 ∈ {1, 2}. (C.11)

For such 𝑝1 and 𝑝2, the RHS of (5.3) is

𝑝1(𝑥)

(𝑝2(𝑥))𝛾
=

1(︀√
2𝜋
)︀1−𝛾 𝜎𝛾2𝜎1 exp

{︂
𝑥2
(︂
𝛾𝜎2

1 − 𝜎2
2

2𝜎2
1𝜎

2
2

)︂
+ 𝑥

(︂
𝜇1

𝜎2
1

− 𝛾𝜇2

𝜎2
2

)︂
+ 𝛾

𝜇2
2

2𝜎2
2

− 𝜇2
1

2𝜎2
1

}︂
.

(C.12)

Conditions (C.10) imply that the quadratic function under the exponent above has

a non-negative coefficient for 𝑥2. Therefore this function either grows unbounded

as 𝑥 → ∞ (if the coefficients for the quadratic and linear terms are not zero), or

constant (if the coefficients for quadratic and linear terms are zero). In either case,∫︀
R
𝑝1(𝑥)/(𝑝2(𝑥))𝛾 𝑑𝑥 =∞.

248

C.3 Proofs and Derivations

C.3.1 Proof of Proposition 5.5.1

Our goal is to show that the policy (5.21) induces the mixture distribution 𝑝𝑀(𝑥) =∑︀𝑚
𝑖=1 𝜔𝑖𝑝𝑖(𝑥).

Preliminaries. In our proof below we use the notion of “the probability of observing

a state 𝑠 ∈ 𝒮 on a GFlowNet trajectory”. Following Bengio et al. [19], we abuse the

notation and denote this probability by

𝑝𝑖(𝑠) ≜ 𝑝𝑖({𝜏 : 𝑠 ∈ 𝜏}) =
∑︁

𝜏∈𝒯𝑠0,𝑠

|𝜏 |−1∏︁
𝑡=0

𝑝𝑖,𝐹 (𝑠𝑡|𝑠𝑡−1), (C.13)

where 𝒯𝑠0,𝑠 is the set of all (sub)trajectories starting at 𝑠0 and ending at 𝑠. The

probabilities induced by the policy (5.21) are denoted by 𝑝𝑀(𝑠). Note that 𝑝𝑖(𝑠) and

𝑝𝑀 (𝑠) should not be interpreted as probability mass functions over the set of states 𝒮.

In particular 𝑝𝑖(𝑠0) = 𝑝𝑀 (𝑠0) = 1 and sums
∑︀

𝑠∈𝒮 𝑝𝑖(𝑠),
∑︀

𝑠∈𝒮 𝑝𝑀 (𝑠) are not equal to 1

(unless 𝒮 = {𝑠0}). However, the functions 𝑝𝑖(·), 𝑝𝑀 (·) restricted to the set of terminal

states 𝒳 give valid probability distributions over 𝒳 :
∑︀

𝑥∈𝒳 𝑝𝑖(𝑥) =
∑︀

𝑥∈𝒳 𝑝𝑀(𝑥) = 1.

By definition 𝑝𝑖(·) and 𝑝𝑀(·) satisfy the recurrent relationship

𝑝𝑖(𝑠) =
∑︁

𝑠*:(𝑠*→𝑠)∈𝒜

𝑝𝑖(𝑠*)𝑝𝑖,𝐹 (𝑠|𝑠*), 𝑝𝑀(𝑠) =
∑︁

𝑠*:(𝑠*→𝑠)∈𝒜

𝑝𝑀(𝑠*)𝑝𝑀,𝐹 (𝑠|𝑠*). (C.14)

The joint distribution of 𝑦 and 𝜏 described in the statement of Proposition 5.5.1

is 𝑝(𝜏, 𝑦 = 𝑖) = 𝑤𝑖𝑝𝑖(𝜏). This joint distribution over 𝑦 and trajectories implies the

following expressions for the distributions involving intermediate states 𝑠.

𝑝(𝑦= 𝑖) = 𝜔𝑖, (C.15)

𝑝(𝜏 |𝑦= 𝑖) = 𝑝𝑖(𝜏) =

|𝜏 |−1∏︁
𝑡=0

𝑝𝑖,𝐹 (𝑠𝑡|𝑠𝑡−1), (C.16)

249

𝑝(𝜏) =
𝑚∑︁
𝑖=1

𝑝(𝜏 |𝑦= 𝑖)𝑝(𝑦= 𝑖) =
𝑚∑︁
𝑖=1

𝜔𝑖𝑝𝑖(𝜏), (C.17)

𝑝(𝑠|𝑦= 𝑖) = 𝑝𝑖(𝑠), (C.18)

𝑝(𝑠) =
𝑚∑︁
𝑖=1

𝑝(𝑠|𝑦= 𝑖)𝑝(𝑦= 𝑖) =
𝑚∑︁
𝑖=1

𝜔𝑖𝑝𝑖(𝑠). (C.19)

Proof. Using the notation introduced above, we can formally state our goal. We

need to show that 𝑝𝑀(𝑥) induced by 𝑝𝑀,𝐹 gives the mixture distribution

𝑝𝑀(𝑥) =
𝑚∑︁
𝑖=1

𝜔𝑖𝑝𝑖(𝑥). (C.20)

We prove a more general equation for all states 𝑠 ∈ 𝒮

𝑝𝑀(𝑠) =
𝑚∑︁
𝑖=1

𝜔𝑖𝑝𝑖(𝑠) (C.21)

by induction over the DAG (𝒮,𝒜).

Base case. Consider the initial state 𝑠0 ∈ 𝒮. By definition 𝑝𝑖(𝑠0) = 𝑝𝑀(𝑠0) = 1

which implies

𝑝𝑀(𝑠0) =
𝑚∑︁
𝑖=1

𝜔𝑖𝑝𝑖(𝑠0). (C.22)

Inductive step. Consider a state 𝑠 such that (C.21) holds for all predecessor states

𝑠* : (𝑠* → 𝑠) ∈ 𝒜. For such a state we have

𝑝𝑀(𝑠) =
∑︁

𝑠*:(𝑠*→𝑠)∈𝒜

𝑝𝑀(𝑠*)𝑝𝑀,𝐹 (𝑠 | 𝑠*) {used (C.14)} (C.23)

=
∑︁

𝑠*:(𝑠*→𝑠)∈𝒜

𝑝𝑀(𝑠*)

(︃
𝑚∑︁
𝑖=1

𝑝(𝑦 = 𝑖|𝑠*)𝑝𝑖,𝐹 (𝑠|𝑠*)
)︃
{used definition of 𝑝𝑀,𝐹}

(C.24)

=
∑︁

𝑠*:(𝑠*→𝑠)∈𝒜

𝑝𝑀(𝑠*)

𝑝(𝑠*)

(︃
𝑚∑︁
𝑖=1

𝑝(𝑠*|𝑦= 𝑖)𝑝(𝑦= 𝑖)𝑝𝑖,𝐹 (𝑠|𝑠*)
)︃
{used Bayes’ theorem}

(C.25)

250

=
∑︁

𝑠*:(𝑠*→𝑠)∈𝒜

𝑝𝑀(𝑠*)∑︀𝑚
𝑖=1 𝜔𝑖𝑝𝑖(𝑠*)

(︃
𝑚∑︁
𝑖=1

𝜔𝑖𝑝𝑖(𝑠*)𝑝𝑖,𝐹 (𝑠|𝑠*)
)︃
{used (C.15), (C.18), (C.19)}

(C.26)

=
∑︁

𝑠*:(𝑠*→𝑠)∈𝒜

(︃
𝑚∑︁
𝑖=1

𝜔𝑖𝑝𝑖(𝑠*)𝑝𝑖,𝐹 (𝑠|𝑠*)
)︃
{used induction hypothesis} (C.27)

=
𝑚∑︁
𝑖=1

𝜔𝑖

⎛⎝ ∑︁
𝑠*:(𝑠*→𝑠)∈𝒜

𝑝𝑖(𝑠*)𝑝𝑖,𝐹 (𝑠|𝑠*)

⎞⎠ {changed summation order} (C.28)

=
𝑚∑︁
𝑖=1

𝜔𝑖𝑝𝑖(𝑠), {used (C.14)} (C.29)

which proves (C.21) for 𝑠.

C.3.2 Proof of Proposition 5.5.2

Claim 1. Our goal is to prove the relationship (5.22) for all non-terminal states

𝑠 ∈ 𝒮 ∖ 𝒳 . To prove this relationship, we invoke several important properties of

Markovian probability flows on DAGs [19].

By Proposition 16 of Bengio et al. [19] for the given GFlowNet forward policy

𝑝𝐹 (·|·) there exists a unique backward policy 𝑝𝐵(·|·) such that the probability of any

complete trajectory 𝜏 = (𝑠0 → . . .→ 𝑠|𝜏 | = 𝑥) in DAG (𝒮,𝒜) can be expressed as

𝑝(𝜏) = 𝑝(𝑥)

|𝜏 |∏︁
𝑡=1

𝑝𝐵(𝑠𝑡−1|𝑠𝑡), (C.30)

and the probability of observing a state 𝑠 ∈ 𝒮 on a trajectory can be expressed as

𝑝(𝑠) =
∑︁
𝑥∈𝒳

𝑝(𝑥)
∑︁
𝜏∈𝒯𝑠,𝑥

|𝜏 |∏︁
𝑡=1

𝑝𝐵(𝑠𝑡−1|𝑠𝑡), (C.31)

where 𝒯𝑠,𝑥 is the set of all (sub)trajectories starting at 𝑠 and ending at 𝑥. Moreover,

𝑝𝐹 (·|·) and 𝑝𝐵(·|·) are related through the “detailed balance condition” [19, Proposition

21]

𝑝(𝑠)𝑝𝐹 (𝑠′|𝑠) = 𝑝(𝑠′)𝑝𝐵(𝑠|𝑠′), ∀ (𝑠→ 𝑠′) ∈ 𝒜. (C.32)

251

By the statement of Proposition 5.5.2, in the probabilistic model 𝑝(𝑥, 𝑦), the

marginal distribution 𝑝(𝑥) is realized by the GFlowNet forward policy 𝑝𝐹 (·|·) and 𝑦 is

independent of intermediate states 𝑠. The joint distribution 𝑝(𝑠, 𝑦) is given by

𝑝(𝑠, 𝑦) =
∑︁
𝑥∈𝒳

𝑝(𝑥, 𝑦)
∑︁
𝜏∈𝒯𝑠,𝑥

|𝜏 |∏︁
𝑡=1

𝑝𝐵(𝑠𝑡−1|𝑠𝑡) (C.33)

=
∑︁
𝑥∈𝒳

𝑝(𝑥, 𝑦)
∑︁

𝑠′:(𝑠→𝑠′)∈𝒜

𝑝𝐵(𝑠|𝑠′)
∑︁
𝜏∈𝒯𝑠′,𝑥

|𝜏 |∏︁
𝑡=1

𝑝𝐵(𝑠𝑡−1|𝑠𝑡) (C.34)

=
∑︁

𝑠′:(𝑠→𝑠′)∈𝒜

𝑝𝐵(𝑠|𝑠′)
∑︁
𝑥∈𝒳

𝑝(𝑥, 𝑦)
∑︁
𝜏∈𝒯𝑠′,𝑥

|𝜏 |∏︁
𝑡=1

𝑝𝐵(𝑠𝑡−1|𝑠𝑡)⏟ ⏞
𝑝(𝑠′,𝑦)

(C.35)

=
∑︁

𝑠′:(𝑠→𝑠′)∈𝒜

𝑝𝐵(𝑠|𝑠′)𝑝(𝑠′, 𝑦). (C.36)

Expressing the conditional probability 𝑝(𝑦|𝑠) through the joint 𝑝(𝑠, 𝑦) we obtain

𝑝(𝑦|𝑠) =
𝑝(𝑠, 𝑦)

𝑝(𝑠)
{used definition of conditional probability} (C.37)

=
1

𝑝(𝑠)

∑︁
𝑠′:(𝑠→𝑠′)∈𝒜

𝑝𝐵(𝑠|𝑠′)𝑝(𝑠′, 𝑦) {used (C.36)} (C.38)

=
∑︁

𝑠′:(𝑠→𝑠′)∈𝒜

𝑝𝐵(𝑠|𝑠′)𝑝(𝑠
′)

𝑝(𝑠)
𝑝(𝑦|𝑠′) {decomposed 𝑝(𝑠′, 𝑦) = 𝑝(𝑠′)𝑝(𝑦|𝑠′)} (C.39)

=
∑︁

𝑠′:(𝑠→𝑠′)∈𝒜

𝑝𝐹 (𝑠′|𝑠)𝑝(𝑦|𝑠′), {used (C.32)} (C.40)

which proves (5.22).

Claim 2. Our goal is to show that the classifier-guided policy (5.23) induces the

conditional distribution 𝑝(𝑦|𝑥).

We know (Section C.3.1) that the state probabilities induced by the marginal

GFlowNet policy 𝑝𝐹 (·|·) satisfy the recurrence

𝑝(𝑠) =
∑︁

𝑠*:(𝑠*→𝑠)∈𝒜

𝑝(𝑠*)𝑝𝐹 (𝑠|𝑠*). (C.41)

252

Let 𝑝𝑦(·) denote the state probabilities induced by the classifier-guided policy (5.23).

These probabilities by definition (Section C.3.1) satisfy the recurrence

𝑝𝑦(𝑠) =
∑︁

𝑠*:(𝑠*→𝑠)∈𝒜

𝑝𝑦(𝑠*)𝑝𝐹 (𝑠|𝑠*, 𝑦). (C.42)

We show that

𝑝𝑦(𝑠) = 𝑝(𝑠|𝑦), (C.43)

by induction over DAG (𝒮,𝒜).

Base case. Consider the initial state 𝑠0. By definition 𝑝𝑦(𝑠0) = 1. At the same time

𝑝(𝑠0|𝑦) = 𝑝({𝜏 : 𝑠0 ∈ 𝜏}|𝑦) = 1. Therefore 𝑝𝑦(𝑠0) = 𝑝(𝑠0|𝑦).

Inductive step. Consider a state 𝑠 such that (C.43) holds for all predecessor states

𝑠* : (𝑠* → 𝑠) ∈ 𝒜. For such a state we have

𝑝𝑦(𝑠) =
∑︁

𝑠*:(𝑠*→𝑠)∈𝒜

𝑝𝑦(𝑠*)𝑝𝐹 (𝑠|𝑠*, 𝑦) {used (C.42)} (C.44)

=
∑︁

𝑠*:(𝑠*→𝑠)∈𝒜

𝑝𝑦(𝑠*)𝑝𝐹 (𝑠|𝑠*)
𝑝(𝑦|𝑠)
𝑝(𝑦|𝑠*)

{used (5.23)} (C.45)

=
∑︁

𝑠*:(𝑠*→𝑠)∈𝒜

𝑝(𝑠*|𝑦)𝑝𝐹 (𝑠|𝑠*)
𝑝(𝑦|𝑠)
𝑝(𝑦|𝑠*)

{used induction hypothesis} (C.46)

=
∑︁

𝑠*:(𝑠*→𝑠)∈𝒜

𝑝(𝑦|𝑠*)𝑝(𝑠*)
𝑝(𝑦)

𝑝𝐹 (𝑠|𝑠*)
𝑝(𝑦|𝑠)
𝑝(𝑦|𝑠*)

{used Bayes’ theorem} (C.47)

=
𝑝(𝑦|𝑠)
𝑝(𝑦)

∑︁
𝑠*:(𝑠*→𝑠)∈𝒜

𝑝(𝑠*)𝑝𝐹 (𝑠|𝑠*) {rearranged terms} (C.48)

=
𝑝(𝑦|𝑠)
𝑝(𝑦)

𝑝(𝑠) {used (C.41)} (C.49)

= 𝑝(𝑠|𝑦), {used Bayes’ theorem} (C.50)

which proves (C.43) for state 𝑠.

253

C.3.3 Proof of Theorem 5.5.3

By Proposition 5.5.1 we have that the policy

𝑝𝑀,𝐹 (𝑠′|𝑠) =
𝑚∑︁
𝑖=1

𝑝𝑖,𝐹 (𝑠′|𝑠)̃︀𝑝(𝑦= 𝑖|𝑠), (C.51)

generates the mixture distribution 𝑝𝑀(𝑥) = 1
𝑚

∑︀𝑚
𝑖=1 𝑝𝑖(𝑥).

In the probabilistic model ̃︀𝑝(𝑥, 𝑦1 . . . , 𝑦𝑛) the marginal distribution ̃︀𝑝(𝑥) = 𝑝𝑀 (𝑥) is

realized by the mixture policy 𝑝𝑀,𝐹 . Therefore, ̃︀𝑝(𝑥, 𝑦1, . . . , 𝑦𝑛) satisfies the conditions

of Proposition 5.5.2 which states that the conditional distribution ̃︀𝑝(𝑥|𝑦1, . . . , 𝑦𝑛) is

realized by the classifier-guided policy

𝑝𝐹 (𝑠′|𝑠, 𝑦1, . . . , 𝑦𝑛) = 𝑝𝑀,𝐹 (𝑠′|𝑠)̃︀𝑝(𝑦1, . . . , 𝑦𝑛|𝑠′)̃︀𝑝(𝑦1, . . . , 𝑦𝑛|𝑠)
=
̃︀𝑝(𝑦1, . . . 𝑦𝑛 | 𝑠′)̃︀𝑝(𝑦1, . . . 𝑦𝑛 | 𝑠)

𝑚∑︁
𝑖=1

𝑝𝑖,𝐹 (𝑠′|𝑠)̃︀𝑝(𝑦= 𝑖|𝑠). (C.52)

C.3.4 Detailed Derivation of Classifier Training Objective

This section provides a more detailed step-by-step derivation of the non-terminal state

classifier training objective (5.27).

Step 1. Our goal is to train a classifier ̃︀𝑄(𝑦1, . . . , 𝑦𝑛|𝑠). This classifier can be

obtained as the optimal solution of

min
𝜑

Ê︀𝜏 ,̂︀𝑦1,...,̂︀𝑦𝑛∼̃︀𝑝(𝜏,𝑦1,...,𝑦𝑛)[︀ℓ(̂︀𝜏 , ̂︀𝑦1, . . . , ̂︀𝑦𝑛;𝜑)
]︀
, (C.53)

where ℓ(·) is defined in equation (5.26). An unbiased estimate of the loss (and its

gradient) can be obtained by sampling (̂︀𝜏 , ̂︀𝑦1, . . . , ̂︀𝑦𝑛) and evaluating (5.26) directly.

However sampling tuples (𝜏, 𝑦1, . . . , 𝑦𝑛) is not straightforward. The following steps

describe our proposed approach to the estimation of expectation in (C.53).

254

Step 2. The expectation in (C.53) can be expressed as

Ê︀𝜏 ,̂︀𝑦1∼̃︀𝑝(𝜏,𝑦1)
⎡⎣ 𝑚∑︁

̂︀𝑦2=1

· · ·
𝑚∑︁

̂︀𝑦𝑛=1

(︃
𝑛∏︁
𝑖=2

̃︀𝑝(𝑦𝑖=̂︀𝑦𝑖|𝑥=̂︀𝑥)

)︃
ℓ(̂︀𝜏 , ̂︀𝑦1, . . . , ̂︀𝑦𝑛;𝜑)

⎤⎦ , (C.54)

where we re-wrote the expectation over (𝑦2, . . . , 𝑦𝑛)|𝜏 as the explicit sum of the

form E𝑞(𝑧)[𝑔(𝑧)] =
∑︀

𝑧∈𝒵 𝑞(𝑧)𝑔(𝑧). The expectation over (𝜏, 𝑦1) can be estimated by

sampling pairs (̂︀𝜏 , ̂︀𝑦1) as described in the paragraph after equation (5.26): 1) ̂︀𝑦1 ∼ ̃︀𝑝(𝑦1)

and 2) ̂︀𝜏 ∼ 𝑝̂︀𝑦1(𝜏). The only missing part is the probabilities ̃︀𝑝(𝑦𝑖=̂︀𝑦𝑖|𝑥=̂︀𝑥) which are

not directly available.

Step 3. Our proposal is to approximate these probabilities as ̃︀𝑝(𝑦1 = 𝑗|𝑥= ̂︀𝑥) ≈
𝑤𝑗(̂︀𝑥;𝜑) = ̃︀𝑄𝜑(𝑦1 =𝑗|𝑥=̂︀𝑥). The idea here is that the terminal state classifier ̃︀𝑄𝜑(𝑦1|𝑥),

when trained to optimality, produces outputs exactly equal to the probabilities ̃︀𝑝(𝑦1|𝑥),

and the more the classifier is trained the better is the approximation of the probabilities.

Step 4. Steps 1-3, give a procedure where the computation of the non-terminal

state classification loss requires access to the terminal state classifier. As we described

in the paragraph preceding equation (5.27), we propose to train non-terminal and

terminal classifiers simultaneously and introduce “target network” parameters. The

weights 𝑤 are computed by the target network ̃︀𝑄𝜑.

Combining all the steps above, we arrive at objective (5.27) which we use to

estimate the expectation in (C.53).

C.3.5 Assumptions and Proof of Proposition 5.5.4

This subsection provides a formal statement of the assumptions and a more detailed

formulation of Proposition 5.5.4.

The assumptions, the formulation of the result, and the proof below closely follow

those of Theorem 1 of Peluchetti [192]. Theorem 1 in [192] generalizes the result

of Brigo [31] (Corollary 1.3), which derives the SDE for mixtures of 1D diffusion

processes.

255

We found an error in the statement and the proof of Theorem 1 (Appendix A.2

of [192]). The error makes the result of [192] for 𝐷-dimensional diffusion processes

disagree with the result of [31] for 1-dimensional diffusion processes.

Here we provide a corrected version of Theorem 1 of [192] in a modified notation

and a simplified setting (mixture of finite rather than infinite number of diffusion

processes). Most of the content is directly adapted from [192].

Notation:

• for a vector-valued 𝑓 : R𝐷 → R𝐷, the divergence of 𝑓 is denoted as ∇ · (𝑓(𝑥)) =∑︀𝐷
𝑑=1

𝜕
𝜕𝑥𝑑

𝑓𝑑(𝑥),

• for a scalar-values 𝑎 : R𝐷 → R, the divergence of the gradient of 𝑎 (the Laplace

operator) is denoted by ∆(𝑎(𝑥)) = ∇ · (∇𝑎(𝑥)) =
∑︀𝐷

𝑑=1
𝜕2

𝜕𝑥2𝑑
𝑎(𝑥).

Assumption 1 (SDE solution). A given 𝐷-dimensional SDE(𝑓, 𝑔):

𝑑𝑥𝑡 = 𝑓𝑡(𝑥𝑡)𝑑𝑡+ 𝑔𝑡𝑑𝑤𝑡, (C.55)

with associated initial distribution 𝑝0(𝑥) and integration interval [0, 𝑇] admits a unique

strong solution on [0, 𝑇].

Assumption 2 (SDE density). A given 𝐷-dimensional SDE(𝑓, 𝑔) with associated

initial distribution 𝑝0(𝑥) and integration interval [0, 𝑇] admits a marginal density on

(0, 𝑇) with respect to the 𝐷-dimensional Lebesgue measure that uniquely satisfies the

Fokker-Plank (Kolmogorov-forward) partial differential equation (PDE):

𝜕𝑝𝑡(𝑥)

𝜕𝑡
= −∇ · (𝑓𝑡(𝑥)𝑝𝑡(𝑥)) +

1

2
∆(𝑔2𝑡 𝑝𝑡(𝑥)). (C.56)

Assumption 3 (positivity). For a given stochastic process, all finite-dimensional

densities, conditional or not, are strictly positive.

Theorem C.3.1 (Diffusion mixture representation). Consider the family of 𝐷-

dimensional SDEs on 𝑡 ∈ [0, 𝑇] indexed by 𝑖 ∈ {1, . . . ,𝑚},

𝑑𝑥𝑖,𝑡 = 𝑓𝑖,𝑡(𝑥𝑖,𝑡)𝑑𝑡+ 𝑔𝑖,𝑡𝑑𝑤𝑖,𝑡, 𝑥𝑖,0 ∼ 𝑝𝑖,0, (C.57)

256

where the initial distributions 𝑝𝑖,0 and the Wiener processes 𝑤𝑖,𝑡 are all independent.

Let 𝑝𝑖,𝑡, 𝑡 ∈ (0, 𝑇) denote the marginal density of 𝑥𝑖,𝑡. For mixing weights {𝜔𝑖}𝑚𝑖=1,

𝜔𝑖 ≥ 0,
∑︀𝑚

𝑖=1 𝜔𝑖 = 1, define the mixture marginal density 𝑝𝑀,𝑡 for 𝑡 ∈ (0, 𝑇) and the

mixture initial distribution 𝑝𝑀,0 by

𝑝𝑀,𝑡(𝑥) =
𝑚∑︁
𝑖=1

𝜔𝑖𝑝𝑖,𝑡(𝑥) 𝑝𝑀,0(𝑥) =
𝑚∑︁
𝑖=1

𝜔𝑖𝑝𝑀,0(𝑥). (C.58)

Consider the 𝐷-dimensional SDE on 𝑡 ∈ [0, 𝑇] defined by

𝑓𝑀,𝑡(𝑥) =

∑︀𝑚
𝑖=1 𝜔𝑖𝑝𝑖,𝑡(𝑥)𝑓𝑖,𝑡(𝑥)

𝑝𝑀,𝑡(𝑥)
, 𝑔𝑀,𝑡(𝑥) =

√︃∑︀𝑚
𝑖=1 𝜔𝑖𝑝𝑖,𝑡(𝑥)𝑔2𝑖,𝑡
𝑝𝑀,𝑡(𝑥)

, (C.59)

𝑑𝑥𝑡 = 𝑓𝑀,𝑡(𝑥𝑡)𝑑𝑡+ 𝑔𝑀,𝑡(𝑥𝑡)𝑑𝑤𝑡, 𝑥𝑀,0 ∼ 𝑝𝑀,0. (C.60)

It is assumed that all diffusion processes 𝑥𝑖,𝑡 and the diffusion process 𝑥𝑀,𝑡 satisfy the

regularity Assumptions 1, 2, and 3. Then the marginal distribution of the diffusion

𝑥𝑀,𝑡 is 𝑝𝑀,𝑡.

Proof. For 0 < 𝑡 < 𝑇 we have that

𝜕𝑝𝑀,𝑡(𝑥)

𝜕𝑡
=

𝜕

𝜕𝑡

(︃
𝑚∑︁
𝑖=1

𝜔𝑖𝑝𝑖,𝑡(𝑥)

)︃
(C.61)

=
𝑚∑︁
𝑖=1

𝜔𝑖
𝜕𝑝𝑖,𝑡(𝑥)

𝜕𝑡
(C.62)

=
𝑚∑︁
𝑖=1

𝜔𝑖

(︂
−∇ · (𝑓𝑖,𝑡(𝑥)𝑝𝑖,𝑡(𝑥)) +

1

2
∆(𝑔2𝑖,𝑡𝑝𝑖,𝑡(𝑥))

)︂
(C.63)

=
𝑚∑︁
𝑖=1

𝜔𝑖

(︂
−∇ ·

(︂
𝑝𝑖,𝑡(𝑥)𝑓𝑖,𝑡(𝑥)

𝑝𝑀,𝑡(𝑥)
𝑝𝑀,𝑡(𝑥)

)︂
+

1

2
∆

(︂
𝑝𝑖,𝑡(𝑥)𝑔2𝑖,𝑡
𝑝𝑀,𝑡(𝑥)

𝑝𝑀,𝑡(𝑥)

)︂)︂
(C.64)

= −∇ ·
(︃

𝑚∑︁
𝑖=1

𝜔𝑖𝑝𝑖,𝑡(𝑥)𝑓𝑖,𝑡(𝑥)

𝑝𝑀,𝑡(𝑥)
𝑝𝑀,𝑡(𝑥)

)︃
+

1

2
∆

(︃
𝑚∑︁
𝑖=1

𝜔𝑖𝑝𝑖,𝑡(𝑥)𝑔2𝑖,𝑡
𝑝𝑀,𝑡(𝑥)

𝑝𝑀,𝑡(𝑥)

)︃
(C.65)

= −∇ · (𝑓𝑀,𝑡(𝑥)𝑝𝑀,𝑡(𝑥)) +
1

2
∆(𝑔2𝑀,𝑡𝑝𝑀,𝑡(𝑥)). (C.66)

The second is an exchange of the order of summation and differentiation, the third

line is the application of the Fokker-Planck PDEs for processes 𝑥𝑖,𝑡, the fourth line

257

is a rewriting in terms of 𝑝𝑀,𝑡, the fifth line is another exchange of the order of

summation and differentiation. The result follows by noticing that 𝑝𝑀,𝑡(𝑥) satisfies

the Fokker-Planck equation of SDE(𝑓𝑀 , 𝑔𝑀).

Proof of Proposition 5.5.4. Below, we show that the result of Proposition 5.5.4

follows from Theorem C.3.1.

First, we rewrite 𝑓𝑀,𝑡(𝑥𝑡) and 𝑔𝑀,𝑡(𝑥𝑡) in (C.59) in terms of the classifier probabili-

ties (5.30):

𝑓𝑀,𝑡(𝑥𝑡) =

∑︀𝑚
𝑖=1 𝜔𝑖𝑝𝑖,𝑡(𝑥𝑡)𝑓𝑖,𝑡(𝑥𝑡)

𝑝𝑀,𝑡(𝑥𝑡)
=

𝑚∑︁
𝑖=1

𝑝(𝑦= 𝑖|𝑥𝑡)𝑓𝑖,𝑡(𝑥𝑡), (C.67)

𝑔𝑀,𝑡(𝑥𝑡) =

√︃∑︀𝑚
𝑖=1 𝜔𝑖𝑝𝑖,𝑡(𝑥𝑡)𝑔

2
𝑖,𝑡

𝑝𝑀,𝑡(𝑥𝑡)
=

⎯⎸⎸⎷ 𝑚∑︁
𝑖=1

𝑝(𝑦= 𝑖|𝑥𝑡)𝑔2𝑖,𝑡. (C.68)

With these expressions, we apply the result of Theorem C.3.1 to the base forward

processes 𝑑𝑥𝑖,𝑡 = 𝑓𝑖,𝑡(𝑥𝑖,𝑡) 𝑑𝑡 + 𝑔𝑖,𝑡 𝑑𝑤𝑖,𝑡 and obtain the mixture forward process in

equation (5.28).

From the forward process, we derive the backward process following Song et al.

[231]. Using the result of Anderson [7], the backward process for (5.28) is given by

𝑑𝑥𝑡 =
[︀
𝑓𝑀,𝑡(𝑥𝑡)−∇𝑥𝑡(𝑔

2
𝑀,𝑡(𝑥𝑡))− 𝑔2𝑀,𝑡(𝑥𝑡)∇𝑥𝑡 log 𝑝𝑀,𝑡(𝑥𝑡)

]︀
𝑑𝑡+ 𝑔𝑀,𝑡(𝑥𝑡) 𝑑𝑤𝑡. (C.69)

Note that the term ∇𝑥𝑡(𝑔
2
𝑀,𝑡(𝑥𝑡)) is due to the fact that the diffusion coefficient 𝑔𝑀,𝑡(𝑥𝑡)

in (5.28) is a function of 𝑥 (cf., equation (16), Appendix A in [231]). This term can

be transformed as follows

∇𝑥𝑡(𝑔
2
𝑀,𝑡(𝑥𝑡)) = ∇𝑥𝑡

(︃
𝑚∑︁
𝑖=1

𝑝(𝑦= 𝑖|𝑥𝑡)𝑔2𝑖,𝑡

)︃
(C.70)

=
𝑚∑︁
𝑖=1

𝑔2𝑖,𝑡∇𝑥𝑡𝑝(𝑦= 𝑖|𝑥𝑡) (C.71)

=
𝑚∑︁
𝑖=1

𝑝(𝑦= 𝑖|𝑥𝑡)𝑔2𝑖,𝑡∇𝑥𝑡 log 𝑝(𝑦= 𝑖|𝑥𝑡) (C.72)

258

=
𝑚∑︁
𝑖=1

𝑝(𝑦= 𝑖|𝑥𝑡)𝑔2𝑖,𝑡∇𝑥𝑡

(︁
log𝜔𝑖 + log 𝑝𝑖,𝑡(𝑥𝑡)− log 𝑝𝑀,𝑡(𝑥𝑡)

)︁
(C.73)

=
𝑚∑︁
𝑖=1

𝑝(𝑦= 𝑖|𝑥𝑡)𝑔2𝑖,𝑡
(︁
∇𝑥𝑡 log 𝑝𝑖,𝑡(𝑥𝑡)−∇𝑥𝑡 log 𝑝𝑀,𝑡(𝑥𝑡)

)︁
(C.74)

=

(︃
𝑚∑︁
𝑖=1

𝑝(𝑦= 𝑖|𝑥𝑡)𝑔2𝑖,𝑡𝑠𝑖,𝑡(𝑥𝑡)
)︃
− 𝑔2𝑀,𝑡(𝑥𝑡)∇𝑥𝑡 log 𝑝𝑀,𝑡(𝑥𝑡). (C.75)

Substituting the last expression in (C.69), we notice that the term

𝑔2𝑀,𝑡(𝑥𝑡)∇𝑥𝑡 log 𝑝𝑀,𝑡(𝑥𝑡) cancels out, and, after simple algebraic manipulations, we

arrive at (5.29).

C.3.6 Proof of Theorem 5.5.5

We proove Theorem 5.5.5 in the assumptions of Section C.3.5. In Section C.3.5 we

established that the mixture diffusion process has the forward SDE

𝑑𝑥𝑡 = 𝑓𝑀,𝑡(𝑥𝑡)𝑑𝑡+ 𝑔𝑀,𝑡(𝑥𝑡) 𝑑𝑤𝑡. (C.76)

and the backward SDE

𝑑𝑥𝑡 =
[︀
𝑓𝑀,𝑡(𝑥𝑡)−∇𝑥𝑡(𝑔

2
𝑀,𝑡(𝑥𝑡))− 𝑔2𝑀,𝑡(𝑥𝑡)∇𝑥𝑡 log 𝑝𝑀,𝑡(𝑥𝑡)

]︀
𝑑𝑡+ 𝑔𝑀,𝑡(𝑥𝑡) 𝑑𝑤𝑡. (C.77)

We apply classifier guidance with classifier ̃︀𝑝(𝑦1, . . . , 𝑦𝑛|𝑥𝑡) to the mixture diffusion

process, following Song et al. [231] (see equations (48)-(49) in [231]). The backward

SDE of the classifier-guided mixture diffusion is

𝑑𝑥𝑡 =
[︁
𝑓𝑀,𝑡(𝑥𝑡)−∇𝑥𝑡(𝑔

2
𝑀,𝑡(𝑥𝑡))

− 𝑔2𝑀,𝑡(𝑥𝑡)
(︁
∇𝑥𝑡 log 𝑝𝑀,𝑡(𝑥𝑡) +∇𝑥𝑡 log ̃︀𝑝(𝑦1, . . . , 𝑦𝑛|𝑥𝑡))︁]︁𝑑𝑡+ 𝑔𝑀,𝑡(𝑥𝑡) 𝑑𝑤𝑡.

(C.78)

Finally, we arrive at (5.32) by substituting (C.75) in the above, canceling out the term

𝑔2𝑀,𝑡(𝑥𝑡)∇𝑥𝑡 log 𝑝𝑀,𝑡(𝑥𝑡), and applying simple algebraic manipulations.

259

C.4 Implementation Details

C.4.1 Classifier Guidance in GFlowNets

Classifier guidance in GFlowNets (5.23) is realized through modification of the base

forward policy via the multiplication by the ratio of the classifier outputs 𝑝(𝑦|𝑠′)/𝑝(𝑦|𝑠).

The ground truth (theoretically optimal) non-terminal state classifier 𝑝(𝑦|𝑠) by Propo-

sition 5.5.2 satisfies (5.22) which ensures that the guided policy (5.23) is valid, i.e. for

any state 𝑠 ∈ 𝒮

∑︁
𝑠′:(𝑠→𝑠′)∈𝒜

𝑝𝐹 (𝑠′|𝑠, 𝑦) =
∑︁

𝑠′:(𝑠→𝑠′)∈𝒜

𝑝𝐹 (𝑠′|𝑠)𝑝(𝑦|𝑠
′)

𝑝(𝑦|𝑠) (C.79)

=
1

𝑝(𝑦|𝑠)
∑︁

𝑠′:(𝑠→𝑠′)∈𝒜

𝑝𝐹 (𝑠′|𝑠)𝑝(𝑦|𝑠′)
⏟ ⏞
=𝑝(𝑦|𝑠) by Proposition 5.5.2

= 1. (C.80)

In practice, the ground truth values of 𝑝(𝑦|𝑠) are unavailable. Instead, an ap-

proximation 𝑄𝜑(𝑦|𝑠) ≈ 𝑝(𝑦|𝑠) is learned. Equation (5.22) might not hold for the

learned classifier 𝑄𝜑, but we still wish to use ̃︀𝑄𝜑 for classifier guidance in practice.

In order to ensure that the classifier-guided policy is valid in practice even when

the approximation 𝑄𝜑(𝑦|𝑠) of the classifier 𝑝(𝑦|𝑠) is used, we implement guidance as

described below.

First, we express the guided policy (5.23) in terms of log-probabilities:

log 𝑝𝐹 (𝑠′|𝑠, 𝑦) = log 𝑝𝐹 (𝑠′|𝑠) + log 𝑝(𝑦|𝑠′)− log 𝑝(𝑦|𝑠). (C.81)

Parameterizing distributions through log-probabilities is common practice in proba-

bilistic modeling: GFlowNet forward policies [16, 158] and probabilistic classifiers are

typically parameterized by deep neural networks that output logits (unnormalized

log-probabilities).

Second, in the log-probability parameterization the guided policy (5.23) can be

260

equivalently expressed as

𝑝𝐹 (𝑠′|𝑠, 𝑦) =
[︀

softmax
(︀

log 𝑝𝐹 (·|𝑠) + log 𝑝(𝑦|·)− log 𝑝(𝑦|𝑠)
)︀]︀
𝑠′

(C.82)

=
exp

(︀
log 𝑝𝐹 (𝑠′|𝑠) + log 𝑝(𝑦|𝑠′)− log 𝑝(𝑦|𝑠)

)︀∑︀
𝑠′′:(𝑠→𝑠′′)∈𝒜 exp

(︀
log 𝑝𝐹 (𝑠′′|𝑠) + log 𝑝(𝑦|𝑠′′)− log 𝑝(𝑦|𝑠)

)︀ . (C.83)

In theory, the softmax operation can be replaced with simple exponentiation, i.e. the

numerator in (C.83) is sufficient on its own since Proposition 5.5.2 ensures that the

sum in the denominator equals to 1. However, using the softmax is beneficial in

practice when we substitute learned classifier 𝑄𝜑(𝑦|𝑠) instead of the ground truth

classifier 𝑝(𝑦|𝑠). Indeed when 𝑄𝜑(𝑦|𝑠) does not satisfy (5.22), the softmax operation

ensures that the guided policy

𝑝𝐹 (𝑠′|𝑠, 𝑦) =
[︀

softmax
(︀

log 𝑝𝐹 (·|𝑠) + log𝑄𝜑(𝑦|·)− log𝑄𝜑(𝑦|𝑠)
)︀]︀
𝑠′

(C.84)

is valid (i.e. probabilities sum up to 1 over 𝑠′). The fact the softmax expression is

valid in theory ensures that policy (C.84) guided by 𝑄𝜑(𝑦|𝑠) approaches the ground

truth policy (guided by 𝑝(𝑦|𝑠)) as 𝑄𝜑(𝑦|𝑠) approaches 𝑝(𝑦|𝑠) throughout training.

C.5 Experiment details

C.5.1 2D Distributions with GFlowNets

The base GFlowNet forward policies 𝑝𝑖,𝐹 (𝑠′|𝑠; 𝜃) were parameterized as MLPs with 2

hidden layers and 256 units in each hidden layer. The cell coordinates of a state 𝑠 on

the 2D 32× 32 grid were one-hot encoded. The dimensionality of the input was 2 · 32.

The outputs of the forward policy network were the logits of the softmax distribution

over 3 action choices: 1) move down; 2) move right; 3) stop.

We trained base GFlowNets with the trajectory balance loss [158]. We fixed the

uniform backward policy in the trajectory balance objective. We used Adam optimizer

[120] with learning rate 0.001, and pre-train the base models for 20 000 steps with

batch size 16 (16 trajectories per batch). The log of the total flow log𝑍𝜃 was optimized

261

with Adam with a learning rate 0.1. In order to promote exploration in trajectory

sampling for the trajectory balance objective, we used the sampling policy which takes

random actions (uniformly) with probability 0.05 but, otherwise, follows the current

learned forward policy.

The classifier was parameterized as MLP with 2 hidden layers and 256 units in

each hidden layer. The inputs to the classifier were one-hot encoded cell coordinates,

terminal state flag ({0, 1}), and log(𝛼/(1−𝛼)) (in the case of parameterized operations).

The classifier outputs were the logits of the joint label distribution ̃︀𝑄𝜑(𝑦1, . . . , 𝑦𝑛|𝑠)
for non-terminal states 𝑠 and the logits of the marginal label distribution ̃︀𝑄𝜑(𝑦1|𝑥) for

terminal states 𝑥.

We trained the classifier with the loss described in Section 5.5.2. We used Adam

with learning rate 0.001. We performed 15 000 training steps with batch size 64 (64

trajectories sampled from each of the base models per training step). We updated

the target network parameters 𝜑 as the exponential moving average (EMA) of 𝜑

with the smoothing factor 0.995. We linearly increased the weight 𝛾(step) of the

non-terminal state loss from 0 to 1 throughout the first 3 000 steps and kept constant

𝛾 = 1 afterward. For the 𝛼-parameterized version of the classifier (Section C.1), we

used the following sampling scheme for 𝛼: ̂︀𝑧 ∼ 𝑈 [−3.5, 3.5], ̂︀𝛼 = 1
1+exp(−̂︀𝑧) .

Quantitative evaluation. For each of the composite distributions shown in Figure 5-

3 we evaluated the L1-distance 𝐿1(𝑝method, 𝑝GT) =
∑︀

𝑥∈𝒳 |𝑝method(𝑥)−𝑝GT(𝑥)| between

the distribution 𝑝method induced by the classifier-guided policy and the ground-truth

composition distribution 𝑝GT computed from the known base model probabilities 𝑝𝑖.

The evaluation results are presented below.

Figure 5-3 top row. 𝑝1 ⊗ 𝑝2: 𝐿1 = 0.071; 𝑝1◑ 𝑝2: 𝐿1 = 0.086; 𝑝1◑ 0.95 𝑝2:

𝐿1 = 0.167.

Figure 5-3 bottom row. ̃︀𝑝(𝑥|𝑦1 =1, 𝑦2 =2): 𝐿1 = 0.076; ̃︀𝑝(𝑥|𝑦1 =1, 𝑦2 =2, 𝑦3 =3):

𝐿1 = 0.087; ̃︀𝑝(𝑥|𝑦1 =2, 𝑦2 =2): 𝐿1 = 0.112; ̃︀𝑝(𝑥|𝑦1 =2, 𝑦2 =2, 𝑦3 =2): 𝐿1 = 0.122.

Figure 5-7 shows the distance between the composition and the ground truth as a

function of the number of training steps for the classifier as well as the terminal and

262

non-terminal classifier learning curves.

C.5.2 Molecule Generation

Reward normalization. We used the following normalization rules for SEH, SA,

and QED rewards in the molecule domain.

• SEH = SEHraw/8;

• SA = 10−SAraw
9

;

• QED = QEDraw.

Training details and hyperparameters. The base GFlowNet policies were pa-

rameterized as graph neural networks with Graph Transformer architecture [268]. We

used 6 transformer layers with an embedding of size 128. The input to the Graph

Transformer was the graph of fragments with node attributes describing fragments

and edge attributes describing attachment points of the edges.

The base GFlowNets were trained with trajectory balance loss. We used Adam

optimizer. For the policy network 𝑝𝐹 (𝑠′|𝑠; 𝜃), we set the initial learning rate 0.0005

and exponentially decayed with the factor 2step/20 0000. For the log of the total flow

log𝑍𝜃 we set the initial learning rate 0.0005 and exponentially decayed with the factor

2step/50 000. We trained the base GFlowNets for 15 000 steps with batch size 64 (64

trajectories per batch). In order to promote exploration in trajectory sampling for the

trajectory balance objective, we used the sampling policy which takes random actions

(uniformly) with probability 0.1 but, otherwise, follows the current learned forward

policy.

The classifier was parameterized as a graph neural network with Graph Transformer

architecture. We used 4 transformer layers with embedding size 128. The inputs to

the classifier were the fragment graph, terminal state flag ({0, 1}), and log(𝛼/(1−𝛼))

(in case of parameterized operations). The classifier outputs were the logits of the

joint label distribution ̃︀𝑄𝜑(𝑦1, . . . , 𝑦𝑛|𝑠) for non-terminal states 𝑠 and the logits of the

marginal label distribution ̃︀𝑄𝜑(𝑦1|𝑥) for terminal states 𝑥.

263

We trained the classifier with the loss described in Section 5.5.2. We used Adam

with learning rate 0.001. We performed 15 000 training steps with batch size 8 (8

trajectories sampled from each of the base models per training step). We updated

the target network parameters 𝜑 as the exponential moving average (EMA) of 𝜑

with the smoothing factor 0.995. We linearly increased the weight 𝛾(step) of the

non-terminal state loss from 0 to 1 throughout the first 4 000 steps and kept constant

𝛾 = 1 afterward. For the 𝛼-parameterized version of the classifier (Section C.1), we

used the following sampling scheme for 𝛼: ̂︀𝑧 ∼ 𝑈 [−5.5, 5.5], ̂︀𝛼 = 1
1+exp(−̂︀𝑧) .

C.5.3 Colored MNIST Generation via Diffusion Models

The colored MNIST experiment in Section 5.6.3 follows the method for composing

diffusion models introduced in Section 5.5.3. The three base diffusion models were

trained on colored MNIST digits generated from the original MNIST dataset. These

colored digits were created by mapping MNIST images from their grayscale repre-

sentation to either the red or green channel, leaving the other channels set to 0. For

Figure 5-6 we post-processed the red and green images generated by the base models

and compositions into beige and cyan respectively, which are more accessible colors

for colorblind people.

Models, training details, and hyperparameters. The base diffusion models

were defined as VE SDEs [231]. Their score models were U-Net [213] networks

consisting of 4 convolutional layers with 64, 128, 256, and 256 channels and 4 matching

transposed convolutional layers. Time was encoded using 256-dimensional Gaussian

random features [240]. The score model was trained using Adam optimizer [120] with

a learning rate decreasing exponentially from 10−2 to 10−4. We performed 200 training

steps with batch size 32.

The first classifier ̃︀𝑄(𝑦1, 𝑦2|𝑥𝑡) was a convolutional network consisting of 2 convolu-

tional layers with 64 and 96 channels and three hidden layers with 512, 256 and 256

units. This classifier is time-dependent and used 128-dimensional Gaussian random

features to embed the time. The output was a 3x3 matrix encoding the predicted

264

log-probabilities. The classifier was trained on trajectories sampled from the reverse

SDE of the base diffusion models using the AdaDelta optimizer [270] with a learning

rate of 1.0. We performed 700 training steps with batch size 128. For the first 100

training steps the classifier was only trained on terminal samples.

The second conditional classifier ̃︀𝑄(𝑦3|𝑦1, 𝑦2, 𝑥𝑡) was a similar convolutional network

with 2 convolutional layers with 64 channels and two hidden layers with 256 units.

This classifier is conditioned both on time and on (𝑦1, 𝑦2). The time variable was

embedded used 128-dimensional Gaussian random features. The (𝑦1, 𝑦2) variables

were encoded using a 1-hot encoding scheme. The output of the classifier was the

three predicted log-probabilities for 𝑦3. Contrary to the first classifier, this one was

not trained on the base diffusion models but rather on samples from the posterior̃︀𝑝(𝑥|𝑦1, 𝑦2). It’s loss function was:

ℒ𝑐(𝜑) = E
(̂︀𝑥0,̂︀𝑥𝑡,̂︀𝑦2,̂︀𝑦1,𝑡)∼̃︀𝑝(𝑥0,𝑥𝑡|𝑦1,𝑦2)̃︀𝑝(𝑦1)̃︀𝑝(𝑦2)𝑝(𝑡)

⎡⎣ 𝑚∑︁
̂︀𝑦3=1

−𝑤̂︀𝑦3(̂︀𝑥0) log ̃︀𝑄𝜑(̂︀𝑦3|̂︀𝑦1, ̂︀𝑦2, ̂︀𝑥𝑡)
⎤⎦
(C.85)

where 𝑤̂︀𝑦3(̂︀𝑥0) is estimated using the first classifier. The classifier was trained using

the AdaDelta optimizer [270] with a learning rate of 0.1. We performed 200 training

steps with batch size 128.

Sampling. Sampling from both the individual base models and the composition

was done using the Predictor-Corrector sampler [231]. We performed sampling over

500 time steps to generate the samples shown in Figure 5-6. The samples used to

train the classifier were generated using the same method.

When sampling from the composition we found that using scaling for the classifier

guidance was generally necessary to achieve high-quality results. Without scaling,

the norm of the gradient over the first and second classifier was too small relative to

the gradient predicted by the score function, and hence did not sufficiently steer the

mixture towards samples from the posterior. Experimentally, we found that scaling

factor 10 for the first classifier and scaling factor 75 for the second produced high

quality results.

265

C.6 Additional Results

C.6.1 Analysis of Sample Diversity of Base GFlowNets in

Molecule Generation Domain

In order to assess the effect of the reward exponent 𝛽 on mode coverage and sample

diversity, we evaluated samples generated from GFlowNets pre-trained with different

values of 𝛽. The results are in Tables C.1 and C.2. The details of the evaluation and

the reported metrics are described in the table captions. As expected, larger reward

exponents shift the learned distributions towards high-scoring molecules (the total

number of molecules with scores above the threshold increases). For ‘SA’ and ‘QED’

models we don’t observe negative effects of large 𝛽 on sample diversity and mode

coverage: the average pairwise similarity of top 1 000 molecules doesn’t grow as 𝛽

increases and the ratio of Tanimoto-separated modes remains high. For ‘SEH’ models

we observe a gradual increase in the average pairwise similarity of top 1 000 molecules

and a gradual decrease in the ratio of Tanimoto-separated modes. However, the total

number of separated modes grows as 𝛽 increases, which indicates that larger reward

exponents do not lead to mode dropping.

C.6.2 Binary Operations for MNIST Digit Generation via

Diffusion Models

Here we present a variant of the colored digit generation experiment from Section

5.6.3 using 2 diffusion models. This allows us to better illustrate the harmonic mean

and contrast operations on this image domain. In a similar fashion to the experiment

in Section 5.6.3, we trained two diffusion models to generate colored MNIST digits. 𝑝1

was trained to generate red and green 0 digits and 𝑝2 was trained to generate green

0 and 1 digits. As before, we used post-processing to map green to cyan and red to

beige.

266

Table C.1: Average pairwise
similarity [16] of molecules
generated by GFlowNets
trained on ’SEH’, ’SA’, ’QED’
rewards at different values
of 𝛽. For each combination
(reward, 𝛽) a GFlowNet
was trained with the cor-
responding reward 𝑅(𝑥)𝛽.
Then, 5 000 molecules were
generated. The numbers in
the table reflect the average
pairwise Tanimoto similarity
of top 1 000 molecules (se-
lected according to the target
reward function).

SEH SA QED

𝛽 = 1 0.527 0.539 0.480
𝛽 = 4 0.529 0.527 0.464
𝛽 = 10 0.535 0.500 0.438
𝛽 = 16 0.548 0.465 0.422
𝛽 = 32 0.585 0.411 0.398
𝛽 = 96 0.618 0.358 0.404

Table C.2: Number of Tanimoto-separated modes found
above reward threshold. For each combination (reward,
𝛽) a GFlowNet was trained with the corresponding
reward 𝑅(𝑥)𝛽, and then 5 000 molecules were gener-
ated. Cell format is "𝐴/𝐵", where 𝐴 is the number
of Tanimoto-separated modes found above the reward
threshold, and 𝐵 is the total number of generated
molecules above the threshold. Analogously to Fig-
ure 14 in [16], we consider having found a new mode
representative when a new molecule has Tanimoto simi-
larity smaller than 0.7 to every previously found mode’s
representative molecule. Reward thresholds (in [0, 1],
normalized values) are ’SEH’: 0.875, ’SA’: 0.75, ’QED’:
0.75. Note that the normalized threshold of 0.875 for
’SEH’ corresponds to the unnormalized threshold of 7
used in [16].

SEH SA QED

𝛽 = 1 15 / 17 37 / 37 0 / 0
𝛽 = 4 12 / 17 82 / 82 0 / 0
𝛽 = 10 85 / 109 332 / 337 18 / 18
𝛽 = 16 190 / 280 886 / 910 253 / 253
𝛽 = 32 992 / 1821 2859 / 3080 3067 / 3124
𝛽 = 96 1619 / 4609 4268 / 4983 4470 / 4980

Implementation details. The diffusion models used in this experiment and their

training procedure were exactly the same as in Section C.5.3. The sampling method

used to obtain samples from the base models and their compositions was also the same.

We found that scaling the classifier guidance was generally required for high-quality

results, and used a scaling factor of 20 in this experiment.

The classifier was a convolutional network with 2 convolutional layers consisting of

32 and 64 channels and two hidden layers with 512 and 128 units. The classifier’s time

input was embedded using 128-dimensional Gaussian random features. The output

was a 2x2 matrix encoding the predicted log-probabilities ̃︀𝑄(𝑦1, 𝑦2 |𝑥𝑡). The classifier

was trained on trajectories, sampled from the reverse SDE of the base diffusion models,

using the AdaDelta optimizer [270] with a learning rate of 0.1 and a decay rate of

0.97. We performed 200 training steps with batch size 128. For the first 100 training

steps, the classifier was only trained on terminal samples.

267

(a) 𝑝1 (b) 𝑝2 (c) 𝑝1 ⊗ 𝑝2 (d) 𝑝1◑ 𝑝2 (e) 𝑝1◐ 𝑝2

Figure C-1: Diffusion model composition on colored MNIST. (a,b) samples
from base diffusion models. (c-e) samples from the resulting harmonic mean and
contrast compositions.

Results. Figure C-1 shows samples obtained from the two trained diffusion models

𝑝1, 𝑝2 and from the harmonic mean and contrast compositions of these models. We

observe that the harmonic mean generates only cyan zero digits, because this is the

only type of digit on which both 𝑝1 and 𝑝2 have high density. The contrast 𝑝1◑ 𝑝2

generates beige zero digits from 𝑝1. However, unlike 𝑝1, it does not generate cyan zero

digits, as 𝑝2 has high density there. The story is similar for 𝑝1◐ 𝑝2, which generates

cyan one digits from 𝑝2, but not zero digits due to 𝑝1 having high density over those.

C.6.3 MNIST Subset Generation via Diffusion Models

We report in this section on additional results for composing diffusion models on the

standard MNIST dataset. We trained two diffusion models: 𝑝{0,...,5} was trained to

generate MNIST digits 0 through 5, and 𝑝{4,...,9} to generate MNIST digits 4 through

9. The training procedure and models used in this experiment were the same as in

Section C.6.2.

Figure C-2 shows samples obtained from the two diffusion models, from the

harmonic mean, and from the contrast compositions of these models. We observe

that the harmonic mean correctly generates mostly images on which both diffusion

models’ sampling distributions have high probability, i.e. digits 4 and 5. For the

contrasts we see that in both cases digits are generated that have high probability

under one model but low probability under the other. We observe some errors, namely

some 9’s being generated by the harmonic mean and some 4’s being generated by

the contrast 𝑝{0,...,5}◐ 𝑝{4,...,9}. This is likely because 4 and 9 are visually similar,

268

(a) 𝑝{0,...,5} (b) 𝑝{4,...,9}

(c)
𝑝{0,...,5} ⊗ 𝑝{4,...,9}

(d)
𝑝{0,...,5}◑ 𝑝{4,...,9}

(e)
𝑝{0,...,5}◐ 𝑝{4,...,9}

Figure C-2: Diffusion model composition on MNIST. (a,b) samples from base
diffusion models. (c-e) samples from the resulting harmonic mean and contrast
compositions.

causing the guiding classifier to misclassify them, and generate them under the wrong

composition.

We also present binary operations between three distributions. In Figure C-3

and C-4, 𝑝0 models even digits, 𝑝1 models odd digits, and 𝑝2 models digits that are

divisible by 3. We color digits {0, 6} purple, {3, 9} blue, {4, 8} orange, and {1, 5, 7}
beige. In Figure C-3, harmonic mean of 𝑝0 and 𝑝2 generates the digit 0 and 6, whereas

the contrast of 𝑝0 with 𝑝2 shows even digits non-divisible by 3 (𝑝0◑ 𝑝2 = {4, 8}),
and odd numbers that are divisible by 3 (𝑝0◐ 𝑝2 = {3, 9}). We observe that the

samples from 𝑝0 ⊗ 𝑝2 inherit artifacts from the base generator for 𝑝2 (the thin digit 0),

which shows the impact that the base models have on the composite distribution. In

Figure C-4 we present similar results between odd digits ({5, 3, 5, 7, 9}. We noticed

that samples from both 𝑝1◑ 𝑝2 and 𝑝1◐ 𝑝2 includes a small number of the digit 3.

269

(a) 𝑝0:Even Digits (b) 𝑝2: {0, 3, 6, 9} (c) 𝑝0 ⊗ 𝑝2 (d) 𝑝0◑ 𝑝2 (e) 𝑝0◐ 𝑝2

Figure C-3: Composing even digits and multiples of three on Colored MNIST.
(a,b) samples from base diffusion models. (c-e) samples from the resulting harmonic
mean and contrast compositions.

(a) 𝑝1: Odd Digits (b) 𝑝2: {0, 3, 6, 9} (c) 𝑝1 ⊗ 𝑝2 (d) 𝑝1◑ 𝑝2 (e) 𝑝1◐ 𝑝2

Figure C-4: Composing odd digits and multiples of three on Colored MNIST.
(a,b) samples from base diffusion models. (c-e) samples from the resulting harmonic
mean and contrast compositions.

C.6.4 Chaining: Sequential Composition of Multiple Distribu-

tions

We present results on chaining binary composition operations sequentially on a custom

colored MNIST dataset.

Setup. We start with three base generative models that are trained to generate

𝑝1, 𝑝2 and 𝑝3 in Figure C-5. Specifically, 𝑝1 is a uniform distribution over digits

{0, 1, 2, 3, 4, 5}, 𝑝2 is a uniform distribution over even digits {0, 2, 4, 6, 8}, and 𝑝3 is a

uniform distribution over digits divisible by 3: {0, 3, 6, 9}. Note that we use a different

color for each digit consistent across 𝑝1, 𝑝2, 𝑝3. Our goal is to produce combinations of

chained binary operations involving all three distributions, where two of them were

combined first, then in a second step, combined with the third distribution through

either harmonic mean ⊗ or contrast ◑ .

270

Binary Classifier Training. Consider, for example, the operation (𝑝1 ⊗ 𝑝2)◑ 𝑝3.

We use the same classifier training procedure for 𝑝1 versus 𝑝2, as well as the composite

model (𝑝1⊗𝑝2) versus 𝑝3, except that in the later case we sample from composite model

as a whole. Our classifier training simultaneously optimizes the terminal classifier and

the intermediate state classifier.

Implementation Detains. We adapted diffusion model training code for the base

distributions from [229]. Our diffusion model used a UNet backbone with four latent

layers on both the contracting and the expansive path. The contracting channel

dimensions were [64, 128, 256, 256] with the kernel size 3, and strides [1, 2, 2, 2]. The

time embedding used a mixture of 128 sine and cosine feature pairs, with a total of

256 dimensions. These features were passed through a sigmoid activation and then

expanded using a different linear head for each layer. The activations were then added

to the 2D feature maps at each layer channel-wise. We used a fixed learning rate of

0.01 with Adam optimizer [120].

We adapted the classifier training code from the MNIST example in Pytorch [189].

Our binary classifier has two latent layers with channel dimensions [32, 64], stride 1

and kernel width of 3. We use dropout on both layers: 𝑝1 = 25%, 𝑝2 = 50%. We train

the network for 200 epochs on data sampled online in batches of 256 from each source

model, and treat the composite model in the second step the same way. We use the

Adadelta [270] optimizer with the default setting of learning rate 1.0.

Sampling. We generate samples according to Sec 5.5.3 and multiply the gradient

by 𝛼 = 20.

Results. Row 3 from Figure C-5 contains mostly zeros with a few exceptions. This

is in agreement with harmonic mean being symmetric. In 𝑝1 ⊗ (𝑝2 ⊗ 𝑝3), digits that

are outside of the intersection still appear with thin strokes.

271

(a) 𝑝1{0− 5} (b) 𝑝2{2 · 𝑖}4𝑖=0 (c) 𝑝3{3 · 𝑖}3𝑖=0 (d) 𝑝1 ⊗ 𝑝2 (e) 𝑝2 ⊗ 𝑝3 (f) 𝑝1 ⊗ 𝑝3

(g) 𝑝1◑ 𝑝2 (h) 𝑝2◑ 𝑝3 (i) 𝑝1◐ 𝑝3 (j) 𝑝1◐ 𝑝2 (k) 𝑝2◐ 𝑝3 (l) 𝑝1◑ 𝑝3

𝑝1 ⊗ (𝑝2 ⊗ 𝑝3) 𝑝2 ⊗ (𝑝1 ⊗ 𝑝3) 𝑝3 ⊗ (𝑝1 ⊗ 𝑝2)

𝑝1◑ (𝑝2◑ 𝑝3) 𝑝1◑ (𝑝2 ⊗ 𝑝3) 𝑝1◑ (𝑝2◐ 𝑝3) 𝑝2◑ (𝑝1◑ 𝑝3) 𝑝2◑ (𝑝1 ⊗ 𝑝3) 𝑝2◑ (𝑝1◐ 𝑝3)

𝑝3◑ (𝑝1◑ 𝑝2) 𝑝3◑ (𝑝1 ⊗ 𝑝2) 𝑝3◑ (𝑝1◐ 𝑝2) 𝑝1 ⊗ (𝑝1◑ 𝑝3) 𝑝1 ⊗ (𝑝2◐ 𝑝3) 𝑝2 ⊗ (𝑝1◑ 𝑝3)

𝑝2 ⊗ (𝑝1◐ 𝑝3) 𝑝3 ⊗ (𝑝1◑ 𝑝2) 𝑝3 ⊗ (𝑝1◐ 𝑝2) 𝑝1 ⊗ (𝑝2◑ 𝑝3) 𝑝1◐ (𝑝2 ⊗ 𝑝3) 𝑝2◐ (𝑝1 ⊗ 𝑝3)

Figure C-5: Chaining Binary Operations on Colored MNIST. (a-c) Samples
from 3 pre-trained diffusion models. (d-l) Samples from binary compositions. (row 3)
The harmonic mean between all three. (row 4 and beyond) various ways to chain the
operations. Parentheses indicate the order of composition.

272

	Abstract
	Acknowledgments
	Epigraph
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation, Research Questions, Contributions

	Background: Deep Probabilistic Models
	Probabilistic Machine Learning
	Training (Learning from Data)
	Inference
	A Note on Probabilistic and Causal Models

	Deep Probabilistic Models
	Deep Probabilistic Models: Parameterization
	Deep Discriminative Models (Classifiers / Regressors)
	Deep Autoregressive Models
	Variational Autoencoders (VAEs)
	Genrative Adversarial Networks (GANs)
	Energy-based Models (EBMs)
	Generative Flow Networks (GFlowNets)
	Normalizing Flows
	Continuous Normalizing Flows (CNFs)
	Diffusion Models

	Deep Probabilistic Models: Training
	Large-Scale Training and Stochastic Gradient-Based Optimization
	Maximum Likelihood Estimation
	Divergence Minimization
	Exact Models: Direct Maximum-Likelihood Estimation
	VAEs: Variational Inference and Evidence Lower Bound
	GANs: Variational Form of Divergences and Game-Theoretic Learning Algorithms
	EBMs: Maximum Likelihood
	EMBs and Diffusion Models: Denoising Score Matching
	CNFs: Flow Matching
	GFlowNets: Trajectory Balance

	Deep Probabilistic Models: Inference

	Pairwise-Discriminator Objectives for Generative Adversarial Networks
	Introduction
	Related Work
	Background
	How To Preserve The Alignment?
	PiarGAN
	Divergence Minimization
	Local Convergence Of Generator
	Sufficient Discriminators
	Minimally Sufficient Discriminators
	Towards Global Convergence of PairGAN
	Aligning Multiple Distributions

	Connections To Other Pairwise Objectives
	Experiments
	Fixed Generator Matching
	Real World Datasets

	Adversarial Support Alignment
	Introduction
	SSD divergence and support alignment
	Difference between supports
	Support Alignment in One-Dimensional Space

	Adversarial Support Alignment
	Spectrum of Notions of Alignment
	Theoretical connections
	Algorithmic connections

	Related Work
	Experiments

	Compositional Sculpting of Iterative Generative Processes
	Introduction
	Background
	Generative Flow Networks (GFlowNets)
	Diffusion Models
	Classifier Guidance in Diffusion Models
	``Energy'' Operations

	Related Work
	Compositional Sculpting of Generative Models
	Binary Composition Operations
	Compositional Sculpting: General Approach

	Compositional Sculpting of Iterative Generative Processes
	Composition of GFlowNets
	Classifier Training (GFlowNets)
	Composition of Diffusion Models
	Classifier Training (Diffusion Models)

	Experiments
	2D Distributions via GFlowNet
	Molecule Generation via GFlowNet
	Colored MNIST Generation via Diffusion Models
	Classifier Learning Curves and Training Time

	Discussion
	Bibliography
	Appendices
	Appendix Pairwise-Discriminator Objectives for Generative Adversarial Networks
	Proof of Proposition 3.5.1
	Proof of Proposition 3.5.2
	Hessian of the Generator Loss
	Proof of Proposition 3.5.3
	Poof of Proposition 3.5.6
	Proof of Proposition 3.5.7
	Toy Example Details
	DiracGAN & DiracPairGAN
	Multiple Distributions

	Experiment Details
	Fixed Generator Matching Experiment
	Real World Datasets Experiment
	Examples

	Appendix Adversarial Support Alignment
	Proofs of the Theoretical Results
	Proof of Proposition 4.2.1
	Assumption and Proof of Theorem 4.2.2
	Comments on Assumption (4.3)
	Proof of Theorem 4.2.2

	Proof of Proposition 4.2.4
	Proof of Proposition 4.4.1
	Proof of Proposition 4.4.2
	Proof of Proposition 4.4.4
	Proof of Proposition 4.4.3

	Discussion of ``Soft'' and ``Hard'' Assignments with 1D Discrete Distributions
	Experiment Details
	USPS to MNIST experiment specifications
	STL to CIFAR experiment specifications
	VisDA-17 experiment specifications

	Appendix Compositional Sculpting of Iterative Generative Processes
	Classifier Guidance for Parameterized Operations
	Proof of Proposition 5.4.1
	Proofs and Derivations
	Proof of Proposition 5.5.1
	Proof of Proposition 5.5.2
	Proof of Theorem 5.5.3
	Detailed Derivation of Classifier Training Objective
	Assumptions and Proof of Proposition 5.5.4
	Proof of Theorem 5.5.5

	Implementation Details
	Classifier Guidance in GFlowNets

	Experiment details
	2D Distributions with GFlowNets
	Molecule Generation
	Colored MNIST Generation via Diffusion Models

	Additional Results
	Analysis of Sample Diversity of Base GFlowNets in Molecule Generation Domain
	Binary Operations for MNIST Digit Generation via Diffusion Models
	MNIST Subset Generation via Diffusion Models
	Chaining: Sequential Composition of Multiple Distributions

