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Abstract—In this work we build a robotic arm controller in
Drake that executes weightlifting motion. Our solution is based on
trajectory optimization approach. We formulate the weightlifting
task as a trajectory optimization problem and numerically solve
for the optimal trajectory using direct collocation and nonlinear
optimization. We evaluate the proposed solution in simulation
across various weight configurations and compare against a
manually-designed baseline trajectory. A special care is given
to handling of the torque limit constraints which play a key role
in the weightlifting task.

I. INTRODUCTION

Many manipulations tasks require execution of complex
coordinated motions. This work focuses on a particular ma-
nipulation task: robotic arm weightlifting. The goal of the
weightlifting task is to find an actuation signal for a robotic
arm which executes a motion resulting in lifting of a heavy
object attached to the arm. The dynamics of a robotic arm
with an attached object is governed by nonlinear ordinary
differential equations. Finding an actuation signal for the
successful execution of the motion is nontrivial since the robot
arm motors must counteract the gravity with limited effort and
ensure a steady lifting motion.

We apply trajectory optimization approach for the
weightlifting task and evaluate obtained trajectories in simula-
tion in Drake [1]. Our approach is based on direct collocation
method [2] for trajectory optimization. The optimal trajectory
is found numerically as a solution to a nonlinear optimization
problem. We empirically evaluate optimized trajectories in
simulation and demonstrate that the optimization method can
find trajectories which execute valid lifting motions across
different weight configurations.

II. PROBLEM STATEMENT

Our goal is to lift a heavy object with a robotic arm. We
assume that, the arm base is stationary, the object is rigid, and
the pose of the object relative to the last link of the arm is fixed.
The configuration of the arm and the object is described by
the position vector (vector of joint angles) q ∈ Rd of the arm,
where d is the number of joints in the arm (i.e. the number
of DOFs). Let O be a point associated with the object. We
denote the position of the object expressed in the world frame
by pO. Under our assumptions the pose of the object is fully
determined by the position q of the arm and the position of
object pO(q) can be computed using the forward kinematics
map of the arm. The height to which the object is lifted in a

given configuration q can be computed as the z-coordinate
of O in the world frame: [pO]z(q). Below, we will use a
shorthand notation zO(q) = [pO]z(q).

We consider a fully-actuated robotic arm with actuation
input u ∈ Rd representing the vector of torques applied at
each of the arm’s joints. Given an initial position qstart, initial
velocities q̇start and an input signal u(t) for t ∈ [0, T ] the
system evolves according to the ODE with the initial condition

ẋ(t) = f(x(t),u(t)), t ∈ [0, T ], (1)
x(0) = xstart, (2)

where x(t) ∈ R2d is the dynamical state of the system

x(t) =

[
q(t)
q̇(t)

]
, xstart =

[
qstart
q̇start

]
, (3)

and function f : R2d × Rd → R2d defines the state equation
(1) derived from the Newton’s laws of motion expressed in
generalized coordinates q.

In the setup described above we formulate the desiderata
for the solution of the weightlifting task. Given an initial state
xstart we seek an actuation input signal u(t), t ∈ [0, T ] with
the following properties.

• Maximal lift height. Following the actuation signal u(t)
the system evolves according to (1)-(2) from the initial
state x(0) = xstart = [qstart, q̇start] to the final state x(T ) =
[q(T ), q̇(T )] so that the lift height zO(q(T )) is as high
as possible.

• Torque limits constraint. We require that the actuation
signal respects the torque limits of the arm:

− ulim ≤ u(t) ≤ ulim, t ∈ [0, T ]. (4)

The torque limit constraint plays an essential role in the
weightlifting task. Indeed, all robot arm actuators can
exert limited torques in practice and an input trajectory
u(t) violating the torque limits cannot be executed on
a real robot arm. Moreover, even if one works in a
simulation and does not model all aspects of the real
robot arm, without torque limits the weightlifting task
becomes trivial as any arbitrarily heavy weight can be
lifted by exerting unbounded torques at the arm’s joints.



III. BASELINE: MANUALLY-DESIGNED TRAJECTORY

In this section we describe a simple manually-designed
trajectory for weightlifting task. We use this simple solution
as a baseline for our trajectory optimization based solution
described in Section IV.

To construct a baseline trajectory (ubase(t),xbase(t)), we
choose a duration T and define a piece-wise linear nominal
position trajectory qnom

base(t):

qnom
base(t) =

{
(0.9T−t)·qstart+t·qupright

0.9T , t ∈ [0, 0.9T ],

qupright, t ∈ [0.9T, T ],
(5)

where qupright corresponds to the upright position of the arm.
Position trajectory qnom

base(t) linearly interpolates between the
starting position qstart and the upright position qupright in the
time segment [0, 0.9T ], and the holds the constant upright
position qnom

base(t) = qupright for t ∈ [0.9T, T ].
Having qnom

base(t) we define the nominal baseline state tra-
jectory xnom

base(t) = [qnom
base(t), q̇

nom
base(t)] by simply computing the

derivative q̇nom
base(t) of the position trajectory qnom

base(t).
Finally, we compute the baseline (ubase(t),xbase(t)) by

simulating the tracking of the nominal state trajectory xnom
base(t)

with the inverse dynamics controller (PID + inverse dynamics
as implemented by InverseDynamicsController in
Drake).

Note that in the baseline trajectory the actuation signal
ubase(t) is not specified explicitly but rather computed by the
controller. Lack of explicit control of the torques ubase(t) is a
serious drawback of the baseline solution, in our experiments
in Section V we observe that the baseline trajectory can
successfully execute the weightlifting motion without violating
the torque limits only for relatively light weights.

IV. WEIGHTLIFTING VIA TRAJECTORY OPTIMIZATION

A. Trajectory Optimization formulation

We cast the weightlifting task as a trajectory optimization
problem:

min
T,u(·),x(·)

ℓf (x(T )) +

T∫
0

ℓr(x(t),u(t)) dt, (6)

s.t. ẋ(t) = f(x(t),u(t)), t ∈ [0, T ], (7)
x(0) = xstart, (8)
Tmin ≤ T ≤ Tmax, (9)
xmin ≤ x(t) ≤ xmax, (10)
− ulim ≤ u(t) ≤ ulim. (11)

Given the initial state of the system xstart = [qstart, q̇start] we
seek the optimal control u(t) and the state trajectory x(t),
t ∈ [0, T ] (note that the duration of the trajectory T is also a
decision variable). The optimal trajectory (uopt(·),xopt(·)) in-
curs the minimum possible trajectory cost (6) while satisfying
the constraints (7)-(11).

a) Cost function: The trajectory cost (6) is defined by the
final cost function ℓf (·) and the running cost function ℓr(·).

For the weightlifting task, we specify the final cost function

ℓf (x(T )) = ℓf

([
q(T )
q̇(T )

])
= − λz,f · zO(q(T )) + λv · ∥q̇(T )]∥2. (12)

The final cost function (12) is a weighted sum of two terms,

• −zO(q(T )) — negated height of object at the end of the
trajectory with weight λz,f > 0;

• ∥q̇(T )]∥2 — squared norm of the final velocity with
weight λv > 0.

With this final cost function the trajectory optimization max-
imizes possible final lift height and minimizes the final joint
velocities. The final velocity cost is added to promote stability
of the lifting motion: a solution where the arm lifts the weight
and secures it in a stationary position (∥q̇(T )]∥2 ≈ 0) is
preferred.

We define the running cost function as

ℓr(x(t),u(t)) = ℓr

([
q(t)
q̇(t)

]
,u(t)

)
= − λz,r · zO(q(t)) + λu · ∥u(t)∥2. (13)

The running cost function (13) is a weighted combination of
two terms:

• −zO(q(t)) — negated height of object at t ∈ [0, T ] with
weight λz,r > 0;

• ∥u(t)∥2 — the squared norm of the torque vector u(t)
with weight λu > 0.

With this running cost the trajectory optimization maximizes
integral of the lift height and minimizes the integral of the
magnitude of the torque signal u(t). The lift height term is
included in the running cost (in addition to the final cost) in
order to promote faster lifting motions (the earlier the object
is lifted the smaller is the integral of the lift height cost). The
torque magnitude term acts as a regularizer of the input signal
and promotes the lifting motions which require smaller torques
applied at the arm joints.

b) Constraints: Constraint (7) ensures that the trajectory
(u(·),x(·)) follows a valid dynamics. Constraint (8) enforces
the initial state condition. Constraint (9) specifies the lower
and upper limits (Tmin, Tmax) on the trajectory duration T .
Constraint (10) enforces position and velocity limits of the
arm’s joints. Finally, constraint (11) limits the torques applied
at the arm joints.

B. Numerical Trajectory Optimization via Direct Collocation

We use direct collocation approach [2] to solve the trajectory
optimization problem (6)-(11) numerically.

In direct collocation approach, an infinite-dimensional
continuous-time optimization problem is transcribed into a
finite-dimensional discrete-time mathematical program. After



the discrete-time mathematical program is solved the approx-
imation of the optimal trajectory (u(t),x(t)) is reconstructed
from the discrete-time sample values u[·],x[·]:

u[n] = u(t[n]), x[n] = x(t[n]), 0 ≤ n ≤ N, (14)
0 = t[0] < t[1] < . . . < t[n− 1] < t[N ] = T, (15)

where N is the number of time samples.
We use a particular direction collocation method where the

reconstructed input trajectory u(t) is represented by a piece-
wise linear function

u(t) is linear on [t[n], t[n+ 1]], (16)
u(t[n]) = u[n], (17)
u(t[n+ 1]) = u[n+ 1], (18)

parameterized by the sample values {u[n]}Nn=0 and the re-
constructed state trajectory is represented by piece-wise cubic
polynomial

x(t) is cubic on [t[n], t[n+ 1]], (19)
x(t[n]) = x[n], (20)
x(t[n+ 1]) = x[n+ 1], (21)
ẋ(t[n]) = f(x[n],u[n]), (22)
ẋ(t[n+ 1]) = f(x[n+ 1],u[n+ 1]), (23)

parameterized by the sample values {x[n]}Nn=0, {u[n]}Nn=0.
With the above parameterization of the trajectories, the

original trajectory optimization problem (6)-(11) can be tran-
scribed into the following finite-dimensional mathematical
program

min
h[·],u[·],x[·]

ℓf (x[N ]) +

N−1∑
n=0

h[n]ℓr(x[n],u[n]), (24)

s.t. F (h[n],x[n],x[n+ 1],u[n],u[n+ 1]) = 0, (25)
x[0] = xstart, (26)
Tmin

N
≤ h[n] ≤ Tmax

N
, (27)

xmin ≤ x[n] ≤ xmax, (28)
− ulim ≤ u[n] ≤ ulim, (29)

where h[·] are the the timesteps

h[n] = t[n+ 1]− t[n], 0 ≤ n ≤ N − 1. (30)

Equation (25) gives the dynamics constraints at the collo-
cation points tc[n] =

1
2 (t[n] + t[n + 1]). The function F is

defined as

F (h,x1,x2,u1,u2) = ẋc − f(xc,uc), (31)

where the values xc, ẋc,uc depend on h,x1,x2,u1,u2:

ẋ1 = f(x1,u1), (32)
ẋ2 = f(x2,u2), (33)

uc =
1

2
(u1 + u2), (34)

xc =
1

2
(x1 + x2) +

h

8
(ẋ1 − ẋ2), (35)

ẋc = − 3

2h
(x1 − x2)−

1

4
(ẋ1 + ẋ2). (36)

We use the mathematical programming module in Drake
to solve the nonlinear program (24)-(29). Internally, for non-
linear programs Drake uses SNOPT SQP solver [3], [4]. We
use the baseline trajectory as (ubase(t),xbase(t)) described in
Section III as an initial guess for the solver. After solving for
the optimal sample values hopt[·], xopt[·], uopt[·] we reconstruct
the nominal optimal trajectory (unom

opt (t),x
nom
opt (t)) using (16)-

(18) and (19)-(23).

C. Trajectory Tracking

The nominal optimal trajectory (unom
opt (t),x

nom
opt (t)) found as

the numerical solution of the non-linear program (24)-(29) is
not guaranteed to exactly follow the system dynamics (1)-(2).

• The mathematical program (24)-(29) has a large num-
ber of decision variables which grows linearly with the
number of the time samples N . In order to limit the
number of decision variables one has to use relatively
coarse discrete-time steps which inevitably introduces
discretization errors in the reconstructed trajectories.

• The constraints (25) are nonlinear. SNOPT’s solution
might violate nonlinear constraints (in this case SNOPT
attempts to minimize the sum of violations).

In order to correct the errors in the nominal trajec-
tory (unom

opt (t),x
nom
opt (t)), we apply trajectory tracking. Specifi-

cally, the final optimal trajectory (uopt(t),xopt(t)) is obtained
as the result of tracking of the nominal state trajectory
xnom

opt (t) with the inverse dynamics controller (using Drake’s
InverseDynamicsController, similarly to tracking of
the nominal state trajectory xnom

base(t) in Section III). The re-
sulting actuation signal uopt(t) in general is different from the
nominal control unom

opt (t). Therefore, we monitor the tracking
trajectory uopt(t) and check that the commanded torques
respect the torque limits (4) throughout the entire duration
of the trajectory. The

V. RESULTS

We implemented and tested the baseline solution (Sec-
tion III) and the trajectory optimization based solution (Sec-
tion IV) in Drake [1]. We used KUKA LBR iiwa 7DOF robot
arm. The parameters used in evaluation are described below:

• Torque limits. We used torque limits provided in the
official technical data brochure for the KUKA LBR iiwa
robot arm [5]:

ulim = [176Nm, 176Nm, 110Nm,

110Nm, 110Nm, 40Nm, 40Nm]. (37)



• Initial position.

qstart = [0, 1.9, 0,−π + 1.9, 0, 0, 0]. (38)

• Upright position.

qupright = [0, 0, 0, 0, 0, 0, 0]. (39)

• Trajectory duration. For the baseline trajectory (5) we
set duration

T = 10 s. (40)

For direct collocation (24)-(29) we set the duration limits

Tmin = 5 s, Tmax = 10 s. (41)

The results of trajectory tracking for different weight con-
figurations are shown in Figures 1, 2. We tested the following
weight configurations.

• Ball weights with masses 5 kg, 15 kg, 17 kg (Figure 1
(a)-(c)).

• Balanced dumbbells (comprised of a cylinder bar and two
ball weights) with total masses 10 kg and 19 kg (Figure 2
(a)-(b)).

• Imbalanced dumbbell of total mass 15 kg distributed over
two balls 13.5 kg + 1.5 kg (Figure 2 (c)).

We observe that the baseline trajectory can be successfully
executed without torque limits violation for moderately heavy
weights: Figure 1 (a)-(b), Figure 2 (a). In these cases, the
optimization method finds trajectories which execute the lifting
motion in a shorter time and better utilize the effort (as
measured by the torque norm). For heavier weights (Figure 1
(a)-(c), Figure 2 (b)-(c)), the baseline trajectory violates the
torque limits, while the optimization procedure finds a valid
signal respecting the constraints. In all cases, the inverse
dynamics controller can accurately track the nominal state
trajectory.

VI. DISCUSSION AND FUTURE WORK

In this work, we implemented a robotic arm controller
in Drake which executes weightlifting motion. Our results
demonstrate the effectiveness of trajectory optimization ap-
proach for the weightlifting task. The potential directions for
future work include further development of the system to
support

• grasping of the object with a gripper and modeling of
friction forces between the gripper and the object during
lifting motion;

• additional constraints such as collision avoidance.
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(a) 5 kg ball weight
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(b) 15 kg ball weight
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(c) 17 kg ball weight

Fig. 1: The results of execution of the baseline trajectory and the optimized trajectory for lifting of ball weights of different
masses. Top panels show the object height zO(q(t)) as a function of time. Bottom panels show the relative norm of the torque

vector ∥u(t)∥rel = maxi
|[u(t)]i|
[ulim]i

as a function of time.
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(a) 10 kg balanced dumbbell
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(b) 19 kg balanced dumbbell
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(c) 15 kg imbalanced (13.5 kg+1.5 kg) dumbbell

Fig. 2: The results of execution of the baseline trajectory and the optimized trajectory for lifting of dumbbells with different
configurations. Top panels show the object height zO(q(t)) as a function of time. Bottom panels show the relative norm of

the torque vector ∥u(t)∥rel = maxi
|[u(t)]i|
[ulim]i

as a function of time.
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