

Background: distribution alignment

Given $\mathcal{P} = \{p^{\theta} \mid \theta \in \Theta\}$ $\mathcal{Q} = \{q^{\theta} \mid \theta \in \Theta\}$ $p^{\theta}(x)$ Find θ^* : $p^{\theta^*} = q^{\theta^*}$

- Generative Models (GAN, Goodfellow et al. 2014) alignment of generated and data distributions.
- **Domain Adaptation** (DANN, Ganin et al. 2016)
 - alignment of representations across domains.

Domain adaptation

Goal: learn classifier on target domain using

- Iabeled dataset in source domain.
- unlabeled dataset in target domain.

Distribution alignment approach:

Feature extractor network $F^ heta:\mathcal{X}
ightarrow\mathcal{Z}$

Training:

- separate classes in source.
- align distributions of source/target features.

- Distribution alignment is not always desired.
- Example: domain adaptation under label distribution shift.
- We propose to align only the supports of distributions.

Target accuracy: 63%

Source class distribution **[33%**, 33%, 33%]

Distribution alignment

Target accuracy: 75%

Target class distribution **[23%**, **65%**, **12%**]

 $p^{\theta^*} = q^{\theta^*}$

Adversarial Support Alignment

Shiyu Chang³ Yang Zhang² Shangyuan Tong¹ Timur Garipov¹ 2MIT-IBM Watson AI Lab 3UC Santa Barbara 1MIT CSAIL

$$\mathcal{D}_{\triangle}(p,q) = \mathbb{E}_{x^q \sim q} \left[d(x^q, \operatorname{supp}(p)) \right] + \mathbb{E}_{x^p \sim p} \left[d(x^q, \operatorname{supp}(p)) \right]$$

$$d(x^{q}, \operatorname{supp}(p)) = \inf_{x^{p} \in \operatorname{supp}(p)} d(x^{q}, x^{p}) \qquad d(x^{p}, \operatorname{supp}(q))$$

1)
$$\mathcal{D}_{\Delta}(p,q) \ge 0 \quad \forall p,q;$$
 2) $\mathcal{D}_{\Delta}(p)$

Theorem

preserves support discrepancy

$$\mathcal{D}_{\triangle}(p,q) = 0 \iff \mathcal{D}_{\triangle}(f^*{}_{\sharp}p, f^*{}_{\sharp}q) = 0$$

 $g(x): f(x) = \operatorname{sigmoid}(g(x))$

I K >

Tommi Jaakkola¹

Results: domain adaptation under label distribution shift

	lpha=0.0 no shift		$\alpha = 1.0$		$\alpha = 1.5$		$\alpha = 2.0$ severe shift	
orithm	average	min	average	min	average	min	average	min
DA	71.9	20.3	72.9	25.8	71.3	27.5	71.3	16.6
NN	97.8	96.0	83.5	25.1	70.0	01.1	57.8	00.9
AC	98.0	96.2	88.2	48.9	78.2	06.6	61.9	01.4
DAN	97.5	95.7	95.7	81.3	86.5	15.2	74.4	07.3
CDAN	98.0	96.6	96.7	85.1	91.3	66.5	77.5	22.2
NN-4	87.4	05.6	94.9	85.7	86.8	21.6	81.5	39.3
A-sq (ours)	93.7	89.2	92.3	83.5	90.9	69.9	87.2	62.5
A-abs (ours)	94.1	88.9	92.8	78.9	92.5	82.4	90.4	68.4

Average and minimum class accuracy (%) on USPS \rightarrow MNIST, LeNet across different levels of shifts in label distributions (α).

$STL \rightarrow CIFAR$, DeepCNN

$\alpha = 0.0$ $\alpha = 0.0$ $\alpha = 2.0$ $\alpha = 2.0$ no shift no shift severe shift severe shift Algorithm min average min average average min average min 43.7No DA 49.522.269.949.865.845.3 19.5 27.0DANN 75.4 75.343.103.6 54.663.336.776.7 56.9 25.575.3VADA 08.563.243.940.5IWDAN 36.873.269.950.545.1 **04.6** 64.431.771.6 27.6 38.3 00.6 64.5IWCDAN 47.837.070.171.872.450.7 18.6 39.0sDANN-4 37.852.166.4**68.1** 44.7 ASA-sq (ours) 64.971.752.935.751.918.352.5 19.7 ASA-abs (ours) 64.867.871.640.940.6 49.0

VisDA-17, ResNet-50

Support alignment as extreme relaxation of distribution alignment.

Adversarial Support Alignment (ASA): method to align distribution supports.

Evaluation on domain adaptation datasets under label distribution shift.

Bonus: spectrum of **relaxed alignment** approaches based on **optimal transport**.

ein distance y(p,q) f(d(x,y)], (d(x,y)], (x,y)dy = p(x) (x,y)dy = q(y)	$\beta\text{-Wasserstein distance (Wu et al. 2019)}$ $\mathcal{D}_{W}^{\beta,\beta}(p,q) = \mathcal{D}_{W}^{\beta}(p,q) + \mathcal{D}_{W}^{\beta}(q,p)$ \parallel $\inf_{\substack{\gamma \\ (x,y) \sim \gamma}} \mathbb{E}[d(x,y)],$ $s.t. \int \gamma(x,y)dy = p(x)$ $\int \gamma(x,y)dx \leq (1+\beta)q(y)$	$SSD \text{ divergence}$ $\mathcal{D}_{\triangle}(p,q) = \mathcal{D}_{W}^{\infty}(p,q) + \mathcal{D}_{W}^{\infty}(q,p)$ \parallel $\mathbb{E}_{x \sim p(x)} \left[d(x, \operatorname{supp}(q)) \right]$
p, q) = 0 (p, q) = 0	$\mathcal{D}_{W}^{\beta,\beta}(p,q) = 0$ $\qquad \qquad $	$\mathcal{D}_{\triangle}(p,q) = 0$ $\qquad \qquad $