# Averaging Weights Leads to Wider Optima and Better Generalization

 $\begin{array}{ccc} {\sf Pavel \ Izmailov^1 \quad Dmitrii \ {\sf Podoprikhin}^{2,3} \quad {\sf Timur \ Garipov}^{4,5} \\ {\sf Dmitry \ Vetrov}^{2,3} \quad {\sf Andrew \ Gordon \ Wilson}^1 \end{array}$ 

<sup>1</sup>Cornell University

<sup>2</sup>Higher School of Economics

<sup>3</sup>Samsung-HSE Laboratory

<sup>4</sup>Samsung AI Center in Moscow

<sup>5</sup>Lomonosov Moscow State University

Uncertainty in Artificial Intelligence Monterey, California, USA

August 9, 2018

## Optima Width

Optima width is conjectured to be correlated with generalization (Keskar et al. [2017], Hochreiter and Schmidhuber [1997])



## Talk Outline

We propose Stochastic Weight Averaging (SWA) — an **equally weighted** running average of parameters (DNN weights) traversed by SGD with a modified learning (cyclical or high constant) rate schedule.

- Improves generalization
- No significant computational overhead
- Extremely easy to implement and use



Explanation:

- Finds wider solutions centered in the set of high-performing networks
- Approximates ensembling

## SGD Experiment: Constant Learning Rate



#### Run SGD with constant learning rate and visualize trajectory

- SGD iterates stay at the boundary of a high-quality region
- Averaging iterates improves performance
- Shift between train and test

#### Explanation: Soap Bubble

Mandt et al. [2017]: SGD with fixed learning rate samples from a Gaussian distribution centered at the minimum of the loss.



SGD iterates concentrate on a surface of an ellipsoid. Averaging lets us go inside the ellipsoid!

## Cyclical Learning Rate

What if we use a cyclical learning rate?



# SGD Experiment: Cyclical Learning Rate



Observations still hold:

- ▶ SGD iterates stay at the boundary of a high-quality region
- Averaging iterates improves performance
- Shift between train and test

Explanation: Ensemble Approximation

 $\blacktriangleright$  SGD is taking small steps, so averaging weights  $\approx$  ensembling by linearization

$$f\left(\frac{1}{n}\sum_{i=1}^{n}w_i\right) \approx \frac{1}{n}\sum_{i=1}^{n}f(w_i)$$

 Empirically, averaging weights and ensembling SGD iterates indeed lead to similar predictions

## SWA details

- Use learning rate schedule that doesn't decay to zero (cyclical or constant)
- Average weights
  - Cyclical LR  $\Rightarrow$  at the end of each cycle
  - $\blacktriangleright$  Constant LR  $\Rightarrow$  at the end of each epoch
- Recompute Batch Normalization statistics at the end of training; in practice do one additional forward pass on train data



## SWA details

- Use learning rate schedule that doesn't decay to zero (cyclical or constant)
- Average weights
  - Cyclical LR  $\Rightarrow$  at the end of each cycle
  - $\blacktriangleright$  Constant LR  $\Rightarrow$  at the end of each epoch
- Recompute Batch Normalization statistics at the end of training; in practice do one additional forward pass on train data



#### SWA vs SGD





- SGD achieves better train loss
- SWA achieves better test accuracy
- Large shift between train and test

## Connecting SWA and SGD Solutions



$$w(t) = t \cdot w_{\mathsf{SGD}} + (1-t) \cdot w_{\mathsf{SWA}}$$

#### SWA Optima Width: Test Error

Width along random rays

$$w(t) = \{w_{\mathsf{SWA}}, w_{\mathsf{SGD}}\} + t \cdot \frac{d}{\|d\|}, \quad d \sim \mathcal{N}(0, I)$$



### SWA Optima Width: Train Loss

Width along random rays

$$w(t) = \{w_{\mathsf{SWA}}, w_{\mathsf{SGD}}\} + t \cdot \frac{d}{\|d\|}, \quad d \sim \mathcal{N}(0, I)$$



## SWA Results

|                                |                  | SWA              |                  |
|--------------------------------|------------------|------------------|------------------|
| DNN (Budget)                   | SGD              | 1 Budget         | 1.5  Budget      |
| CIFAR-100                      |                  |                  |                  |
| VGG-16 (200)                   | $72.55\pm0.10$   | $73.91 \pm 0.12$ | $74.27 \pm 0.25$ |
| ResNet-164 $(150)$             | $78.49 \pm 0.36$ | $79.77\pm0.17$   | $80.35 \pm 0.16$ |
| WRN-28-10 (200)                | $80.82\pm0.23$   | $81.46 \pm 0.23$ | $82.15 \pm 0.27$ |
| PyramidNet-272~(300)           | $83.41 \pm 0.21$ | _                | $84.16 \pm 0.15$ |
| CIFAR-10                       |                  |                  |                  |
| VGG-16 (200)                   | $93.25\pm0.16$   | $93.59\pm0.16$   | $93.64 \pm 0.18$ |
| ResNet-164 $(150)$             | $95.28 \pm 0.10$ | $95.56 \pm 0.11$ | $95.83 \pm 0.03$ |
| WRN-28-10 (200)                | $96.18 \pm 0.11$ | $96.45 \pm 0.11$ | $96.79 \pm 0.05$ |
| ShakeShake- $2x64d$ ( $1800$ ) | $96.93 \pm 0.10$ | _                | $97.12 \pm 0.06$ |
| Imagenet                       |                  |                  |                  |
|                                |                  | SWA              |                  |
| DNN                            | SGD              | 5  epochs        | 10  epochs       |
| ResNet-50                      | 76.15            | $76.83 \pm 0.01$ | $76.97 \pm 0.05$ |
| ResNet-152                     | 78.31            | $78.82\pm0.01$   | $78.94 \pm 0.07$ |
| DenseNet-161                   | 77.65            | $78.26 \pm 0.09$ | $78.44 \pm 0.06$ |

## Applications and Extensions

- Two papers at UDL workshop tomorrow!
  - Improving Stability in Deep Reinforcement Learning with Weight Averaging
  - Fast Uncertainty Estimates and Bayesian Model Averaging of DNNs
- Athiwaratkun et al. [2018]: use a modified version of SWA to get SOTA results in Semi-Supervised Learning

## Summary

- SWA is a simple technique that consistently improves generalization with deep neural networks with virtually no computational overhead
- SWA is very easy to use and implement and proved useful in a range of applications
- Code is available, so we encourage you to try SWA for yourself!
  - PyTorch: https://github.com/timgaripov/swa
  - Chainer: https://github.com/chainer/models/tree/master/swa
  - fast.ai: https://github.com/fastai/fastai

#### References

- Ben Athiwaratkun, Marc Finzi, Pavel Izmailov, and Andrew Gordon Wilson. Improving consistency-based semi-supervised learning with weight averaging. *arXiv preprint arXiv:1806.05594*, 2018.
- Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. *Neural Computation*, 9(1):1–42, 1997.
- Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. *International Conference on Learning Representations*, 2017.
- Stephan Mandt, Matthew D Hoffman, and David M Blei. Stochastic gradient descent as approximate bayesian inference. *The Journal of Machine Learning Research*, 18(1):4873–4907, 2017.