
1/18

Averaging Weights Leads to Wider Optima and
Better Generalization

Pavel Izmailov1 Dmitrii Podoprikhin2,3 Timur Garipov4,5

Dmitry Vetrov2,3 Andrew Gordon Wilson1

1Cornell University

2Higher School of Economics

3Samsung-HSE Laboratory

4Samsung AI Center in Moscow

5Lomonosov Moscow State University

Uncertainty in Artificial Intelligence
Monterey, California, USA

August 9, 2018



2/18

Optima Width

Optima width is conjectured to be correlated with generalization (Keskar
et al. [2017], Hochreiter and Schmidhuber [1997])
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Talk Outline
We propose Stochastic Weight Averaging (SWA) — an equally weighted
running average of parameters (DNN weights) traversed by SGD with a
modified learning (cyclical or high constant) rate schedule.

I Improves generalization
I No significant computational overhead
I Extremely easy to implement and use
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Explanation:
I Finds wider solutions centered in the set of high-performing networks
I Approximates ensembling
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SGD Experiment: Constant Learning Rate

Run SGD with constant learning rate and visualize trajectory
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I SGD iterates stay at the boundary of a high-quality region
I Averaging iterates improves performance
I Shift between train and test
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Explanation: Soap Bubble

Mandt et al. [2017]: SGD with fixed learning rate samples from a Gaussian
distribution centered at the minimum of the loss.

SGD iterates concentrate on a surface of an ellipsoid. Averaging lets us go
inside the ellipsoid!
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Cyclical Learning Rate

What if we use a cyclical learning rate?
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SGD Experiment: Cyclical Learning Rate
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Observations still hold:
I SGD iterates stay at the boundary of a high-quality region
I Averaging iterates improves performance
I Shift between train and test
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Explanation: Ensemble Approximation

I SGD is taking small steps, so averaging weights ≈ ensembling by
linearization
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I Empirically, averaging weights and ensembling SGD iterates indeed
lead to similar predictions
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SWA details
I Use learning rate schedule that doesn’t decay to zero (cyclical or

constant)
I Average weights

I Cyclical LR ⇒ at the end of each cycle
I Constant LR ⇒ at the end of each epoch

I Recompute Batch Normalization statistics at the end of training; in
practice do one additional forward pass on train data
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SWA vs SGD

Run SGD and SWA from the same initialization (ResNet-164, CIFAR-100)
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I SGD achieves better train loss
I SWA achieves better test accuracy
I Large shift between train and test
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Connecting SWA and SGD Solutions
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w(t) = t · wSGD + (1− t) · wSWA
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SWA Optima Width: Test Error

Width along random rays

w(t) = {wSWA, wSGD}+ t · d

‖d‖ , d ∼ N (0, I)
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SWA Optima Width: Train Loss

Width along random rays

w(t) = {wSWA, wSGD}+ t · d

‖d‖ , d ∼ N (0, I)
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SWA Results

SWA
DNN (Budget) SGD 1 Budget 1.5 Budget

CIFAR-100
VGG-16 (200) 72.55± 0.10 73.91± 0.12 74.27± 0.25

ResNet-164 (150) 78.49± 0.36 79.77± 0.17 80.35± 0.16
WRN-28-10 (200) 80.82± 0.23 81.46± 0.23 82.15± 0.27

PyramidNet-272 (300) 83.41± 0.21 – 84.16± 0.15
CIFAR-10

VGG-16 (200) 93.25± 0.16 93.59± 0.16 93.64± 0.18
ResNet-164 (150) 95.28± 0.10 95.56± 0.11 95.83± 0.03
WRN-28-10 (200) 96.18± 0.11 96.45± 0.11 96.79± 0.05

ShakeShake-2x64d (1800) 96.93± 0.10 – 97.12± 0.06
Imagenet

SWA
DNN SGD 5 epochs 10 epochs

ResNet-50 76.15 76.83± 0.01 76.97± 0.05
ResNet-152 78.31 78.82± 0.01 78.94± 0.07

DenseNet-161 77.65 78.26± 0.09 78.44± 0.06
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Applications and Extensions

I Two papers at UDL workshop tomorrow!
I Improving Stability in Deep Reinforcement Learning with Weight

Averaging
I Fast Uncertainty Estimates and Bayesian Model Averaging of DNNs

I Athiwaratkun et al. [2018]: use a modified version of SWA to get
SOTA results in Semi-Supervised Learning
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Summary

I SWA is a simple technique that consistently improves generalization
with deep neural networks with virtually no computational overhead

I SWA is very easy to use and implement and proved useful in a range
of applications

I Code is available, so we encourage you to try SWA for yourself!
I PyTorch: https://github.com/timgaripov/swa
I Chainer: https://github.com/chainer/models/tree/master/swa
I fast.ai: https://github.com/fastai/fastai

https://github.com/timgaripov/swa
https://github.com/chainer/models/tree/master/swa
https://github.com/fastai/fastai
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