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Optima Width

Optima width is conjectured to be correlated with generalization (Keskar
et al. [2017], Hochreiter and Schmidhuber [1997])
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Talk Outline

We propose Stochastic Weight Averaging (SWA) — an equally weighted
running average of parameters (DNN weights) traversed by SGD with a
modified learning (cyclical or high constant) rate schedule.

» Improves generalization
» No significant computational overhead
> Extremely easy to implement and use
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Explanation:
» Finds wider solutions centered in the set of high-performing networks

» Approximates ensembling



SGD Experiment: Constant Learning Rate

Run SGD with constant learning rate and visualize trajectory
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» SGD iterates stay at the boundary of a high-quality region
> Averaging iterates improves performance

» Shift between train and test
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Explanation: Soap Bubble

Mandt et al. [2017]: SGD with fixed learning rate samples from a Gaussian
distribution centered at the minimum of the loss.

SGD iterates concentrate on a surface of an ellipsoid. Averaging lets us go
inside the ellipsoid!



Cyclical Learning Rate

What if we use a cyclical learning rate?
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SGD Experiment: Cyclical Learning Rate

Train loss
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Observations still hold:

» SGD iterates stay at the boundary of a high-quality region
> Averaging iterates improves performance

» Shift between train and test
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Explanation: Ensemble Approximation

» SGD is taking small steps, so averaging weights = ensembling by
linearization
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» Empirically, averaging weights and ensembling SGD iterates indeed
lead to similar predictions



SWA details

» Use learning rate schedule that doesn’t decay to zero (cyclical or
constant)

> Average weights

» Cyclical LR = at the end of each cycle
» Constant LR = at the end of each epoch

» Recompute Batch Normalization statistics at the end of training; in
practice do one additional forward pass on train data
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SWA details

» Use learning rate schedule that doesn’t decay to zero (cyclical or
constant)

> Average weights
» Cyclical LR = at the end of each cycle
» Constant LR = at the end of each epoch

» Recompute Batch Normalization statistics at the end of training; in
practice do one additional forward pass on train data
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SWA vs SGD

Run SGD and SWA from the same initialization (ResNet-164, CIFAR-100)
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» SGD achieves better train loss

» SWA achieves better test accuracy
» Large shift between train and test
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Connecting SWA and SGD Solutions

—— Train loss
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SWA Optima Width: Test Error

Width along random rays
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SWA Optima Width: Train Loss

Width along random rays
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SWA Results

SWA
DNN (Budget) SGD 1 Budget 1.5 Budget
CIFAR-100
VGG-16 (200) 72.55+0.10 73.91£0.12 74.27+0.25
ResNet-164 (150) 78.49+0.36 79.77+0.17 80.35+0.16
WRN-28-10 (200) 80.82 +£0.23 81.46 +0.23 82.15+0.27
PyramidNet-272 (300) 83.41 £0.21 = 84.16 £0.15
CIFAR-10
VGG-16 (200) 93.25+£0.16 93.594+0.16 93.64 +0.18
ResNet-164 (150) 95.28 £0.10 95.56 +0.11 95.83 +£0.03
WRN-28-10 (200) 96.18 £0.11 96.454+0.11 96.79 £0.05
ShakeShake-2x64d (1800) 96.93 +0.10 = 97.12 + 0.06
Imagenet
SWA
DNN SGD 5 epochs 10 epochs
ResNet-50 76.15 76.83+0.01 76.97 +0.05
ResNet-152 78.31 78.82+0.01 78.94+0.07
DenseNet-161 77.65 78.26 +0.09 78.44 + 0.06




Applications and Extensions

» Two papers at UDL workshop tomorrow!
> Improving Stability in Deep Reinforcement Learning with Weight
Averaging
» Fast Uncertainty Estimates and Bayesian Model Averaging of DNNs
> Athiwaratkun et al. [2018]: use a modified version of SWA to get
SOTA results in Semi-Supervised Learning



Summary

» SWA is a simple technique that consistently improves generalization
with deep neural networks with virtually no computational overhead

» SWA is very easy to use and implement and proved useful in a range
of applications
» Code is available, so we encourage you to try SWA for yourself!

» PyTorch: https://github.com/timgaripov/swa
> Chainer: https://github.com/chainer/models/tree/master/swa
> fast.ai: https://github.com/fastai/fastai


https://github.com/timgaripov/swa
https://github.com/chainer/models/tree/master/swa
https://github.com/fastai/fastai
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