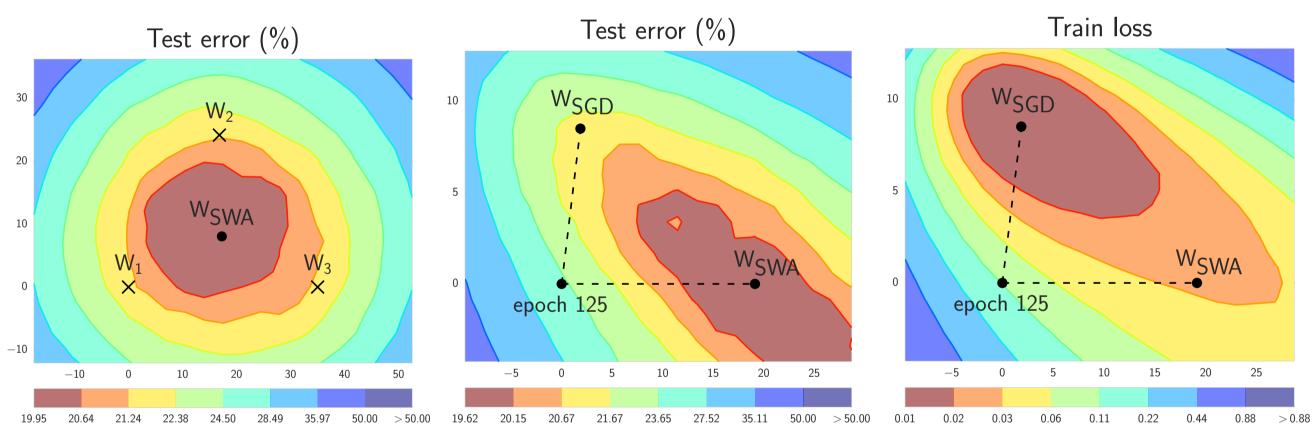
Averaging Weights Leads to Wider Optima and Better Generalization Pavel Izmailov^{*1}, Dmitrii Podoprikhin^{*2,3}, Timur Garipov^{*4,5}, Dmitry Vetrov^{2,3}, and Andrew Gordon Wilson¹

¹Cornell University, ²Higher School of Economics, ³Samsung-HSE Laboratory, ⁴Samsung AI Center in Moscow, and ⁵Lomonosov Moscow State University

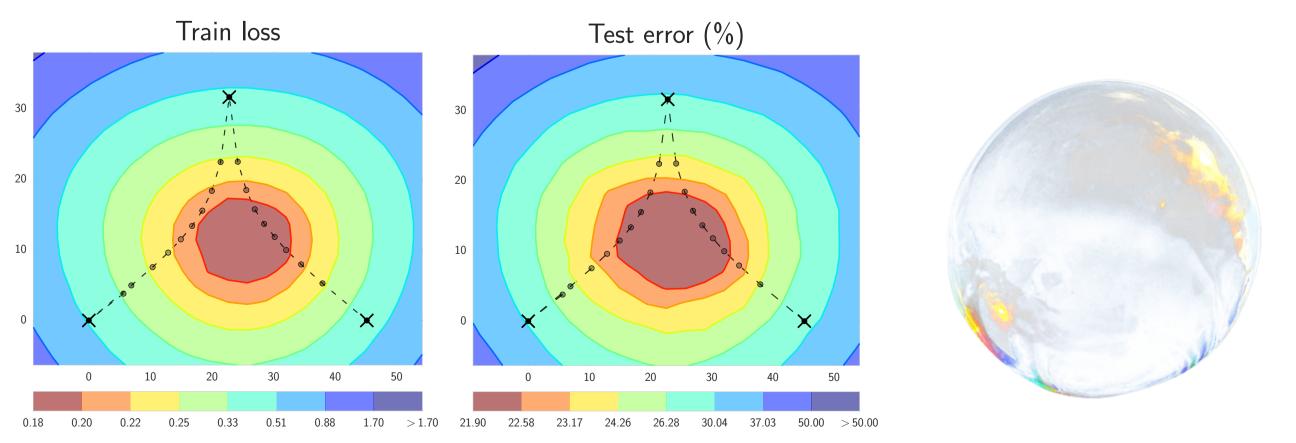
Outline

- SGD with cyclical and constant learning rates traverses regions of weight space corresponding to high-performing networks. While these models are moving around this optimal set they never reach its central points
- We can move into this more desirable space of points by averaging the weights proposed over SGD iterations
- We propose Stochastic Weight Averaging (SWA) an equally weighted running average of parameters (DNN weights) traversed by SGD with a modified (cyclical or high constant) learning rate schedule
- SWA leads to solutions corresponding to wider optima than SGD and achieves notable generalization improvement for a broad range of architectures over several consequential benchmarks with virtually no computational overhead



Motivation

Let's continue to run SGD with a constant learning rate from a pretrained solution and visualize the trajectory.



SGD oscilates around the region of high-performing solutions and averaging SGD iterates improves test performance.

Explanations:

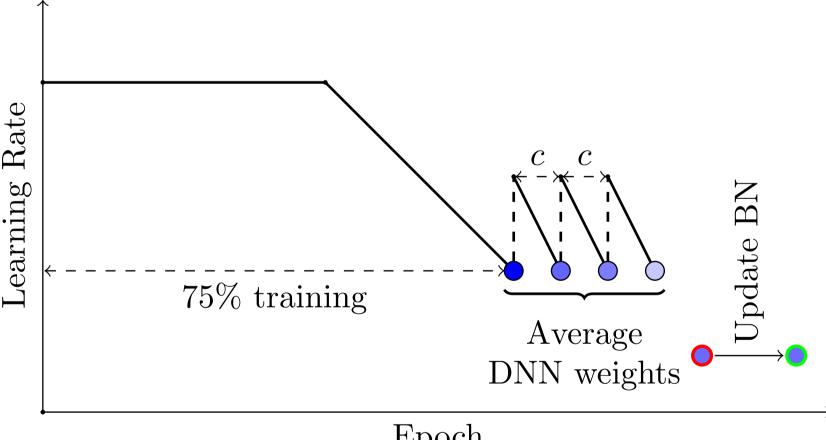
- Soap Bubble: constant learning rate SGD is sampling from a highdimensional Gaussian, which has most of its mass concentrated in a thin shell
- Averaging weights approximates ensembling predictions by linearization if the weights being averaged are close

$$f\left(\frac{1}{n}\sum_{i=1}^{n}w_{i}\right)\approx\frac{1}{n}\sum_{i=1}^{n}w_{i}$$

Stochastic Weight Averaging

Details of SWA:

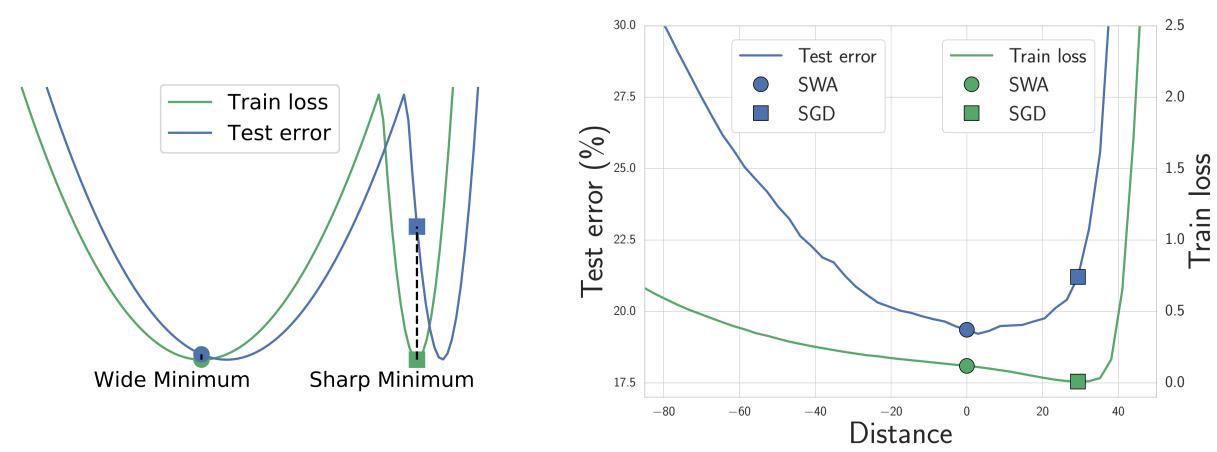
- Use learning rate schedule that doesn't decay to zero, e.g. cyclical or high constant at the end of training
- Average weights at the end of each of the last K epochs or at the end of each cycle
- Recompute Batch Normalization statistics at the end of training



Epoch

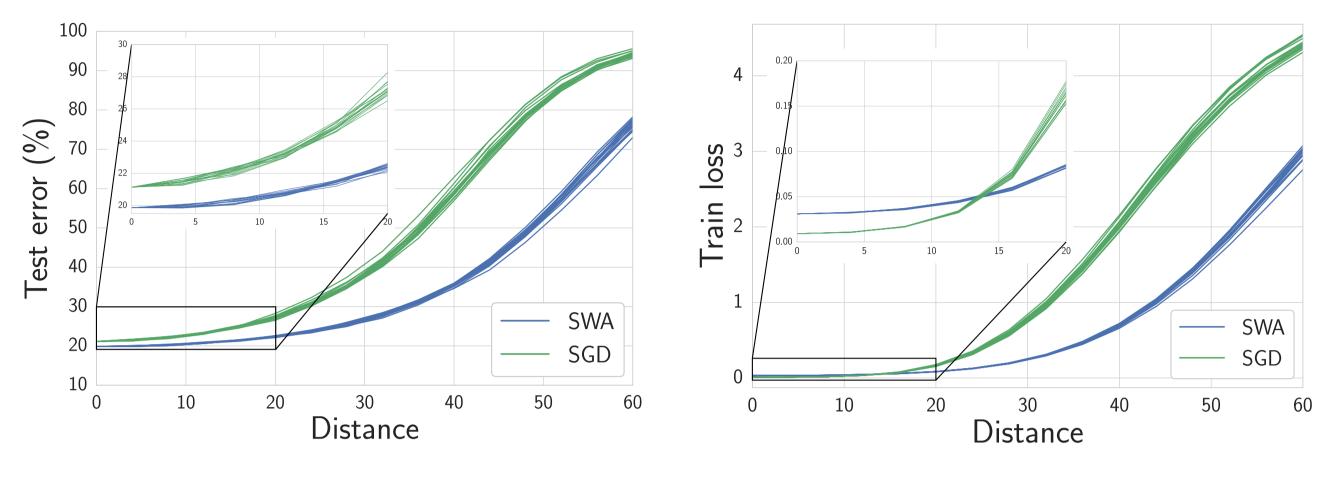
Optima Width

Optima width is conjectured to be highly correlated with generalization.



 $\sum f(w_i)$

networks.



Results

DNN (Budget)

VGG-16 (200) **ResNet-164** (150) WRN-28-10 (200) **PyramidNet-**272 (300)

VGG-16 (200) **ResNet-164** (150) WRN-28-10 (200) ShakeShake-2x64d (1800)

DNN

ResNet-50 ResNet-152 DenseNet-161

Code

Code available at https://github.com/timgaripov/swa

SWA leads to wider optima centered in the region of high-performing

	SWA	
SGD	1 Budget	1.5 Budget
CIFAR-100		
72.55 ± 0.10	73.91 ± 0.12	74.27 ± 0.25
78.49 ± 0.36	79.77 ± 0.17	80.35 ± 0.16
80.82 ± 0.23	81.46 ± 0.23	82.15 ± 0.27
83.41 ± 0.21		84.16 ± 0.15
CIFAR-10		
93.25 ± 0.16	93.59 ± 0.16	93.64 ± 0.18
95.28 ± 0.10	95.56 ± 0.11	95.83 ± 0.03
96.18 ± 0.11	96.45 ± 0.11	96.79 ± 0.05
96.93 ± 0.10		97.12 ± 0.06
Imagenet		
	SWA	
SGD	5 epochs	10 epochs
		• • • • • • • • • • • • • • • • • • •

76.15	76.83 ± 0.01	76.97 ± 0.05
78.31	78.82 ± 0.01	78.94 ± 0.07
77.65	78.26 ± 0.09	78.44 ± 0.06