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Outline
• SGD with cyclical and constant learning rates traverses regions of

weight space corresponding to high-performing networks. While
these models are moving around this optimal set they never reach
its central points

• We can move into this more desirable space of points by averaging
the weights proposed over SGD iterations

• We propose Stochastic Weight Averaging (SWA) – an equally
weighted running average of parameters (DNN weights) traversed
by SGD with a modified (cyclical or high constant) learning rate
schedule

• SWA leads to solutions corresponding to wider optima than SGD
and achieves notable generalization improvement for a broad range
of architectures over several consequential benchmarks with virtu-
ally no computational overhead
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Motivation
Let’s continue to run SGD with a constant learning rate from a pre-
trained solution and visualize the trajectory.
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SGD oscilates around the region of high-performing solutions and av-
eraging SGD iterates improves test performance.

Explanations:

• Soap Bubble: constant learning rate SGD is sampling from a high-
dimensional Gaussian, which has most of its mass concentrated in a
thin shell

• Averaging weights approximates ensembling predictions by lin-
earization if the weights being averaged are close
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Stochastic Weight Averaging
Details of SWA:

• Use learning rate schedule that doesn’t decay to zero, e.g. cyclical
or high constant at the end of training

• Average weights at the end of each of the last K epochs or at the end
of each cycle

• Recompute Batch Normalization statistics at the end of training
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Optima Width
Optima width is conjectured to be highly correlated with generalization.
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SWA leads to wider optima centered in the region of high-performing
networks.

Results
SWA

DNN (Budget) SGD 1 Budget 1.5 Budget
CIFAR-100

VGG-16 (200) 72.55± 0.10 73.91± 0.12 74.27± 0.25

ResNet-164 (150) 78.49± 0.36 79.77± 0.17 80.35± 0.16

WRN-28-10 (200) 80.82± 0.23 81.46± 0.23 82.15± 0.27

PyramidNet-272 (300) 83.41± 0.21 – 84.16± 0.15

CIFAR-10
VGG-16 (200) 93.25± 0.16 93.59± 0.16 93.64± 0.18

ResNet-164 (150) 95.28± 0.10 95.56± 0.11 95.83± 0.03

WRN-28-10 (200) 96.18± 0.11 96.45± 0.11 96.79± 0.05

ShakeShake-2x64d (1800) 96.93± 0.10 – 97.12± 0.06

Imagenet
SWA

DNN SGD 5 epochs 10 epochs
ResNet-50 76.15 76.83± 0.01 76.97± 0.05

ResNet-152 78.31 78.82± 0.01 78.94± 0.07

DenseNet-161 77.65 78.26± 0.09 78.44± 0.06

Code
Code available at https://github.com/timgaripov/swa


