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Key Results

Bayesian Incremental Learning allows to sequentially update model
parameters without the use of old training data:

Modelold, Datanew → Modelnew

Our contributions can be summarized as follows:

We apply sequential Bayesian inference to the incremental learning setting

We evaluate different posterior approximations

We propose a way to use pretrained models

Bayesian Incremental Learning

Dataset is divided into T parts D1, . . . ,DT , which arrive sequentially
during training

The goal is to update model p(w | D1, . . . ,Dt−1) with p(Dt |w)
Bayesian approach can be applied

p(w | D1, . . . ,Dt) =
p(Dt |w)p(w | D1, . . . ,Dt−1)∫
p(Dt |w)p(w | D1, . . . ,Dt−1) dw

In most cases the posterior distribution p(w | D1, . . . ,Dt) is intractable

Scalable Bayesian Incremental Learning

p(w | D1, . . . ,Dt) – intractable, approximate it with q(w |φt)
Old approximation q(w |φt−1) is reused as a prior

Dt can be large, minibatch training can be applied

Using variational inference we get an optimization problem

Eq(w |φt)log p(Dt |w)︸ ︷︷ ︸
Data term (likelihood)

−DKL(q(w |φt) || q(w |φt−1))︸ ︷︷ ︸
KL term (regularizer)

→ max
φt

Pretraining

First incremental step requires prior distribution to be specified

Usually only pretrained weights are available (a point estimate)

One can use a Gaussian prior

p(w) = N (w |w?, σ2),

where w? are pretrained weights and σ2 is a hyper-parameter to be specified

How to set σ2?
Grid search

+ easy to implement

− low flexibility

− computationally expensive

Laplace approximation

+ fits σ̂2 for every weight

− requires old data

Fully Factorized Gaussian Approximation (FFG)

Consider a dense layer with input and output dimensions I , O, respectively

qφ(w) =
I∏
i=1

O∏
j=1

N (wij |µij, σ2ij)

Fully Factorized Gaussian is a widely used approximation

Discussion

+ fast, stable and easy to use approximation family

− low expressiveness

The approximate posterior for a convolutional layer factorizes similarly over
all kernel parameters

Channel Factorized Gaussian Approximation (CFG)

Consider a convolutional layer with N filters and C channels with filter size
H ×W . Lnc ∈ RHW×HW denotes a Cholesky factor for the covariance
matrix

qφ(w) =
N∏
n=1

C∏
c=1

N (wnc |µnc, LncL>nc)

Discussion

+ preserves dependencies within kernel parameters channel-wise

+ tractable reparemetrization trick

− O(H2W 2) more parameters

Multiplicative Normalizing Flow Approximation (MNF)

Consider a convolutional layer, z0 follows a simple fixed distribution q(z0) and
NF is a normalizing flow

qφ(w | z) =
N∏
n=1

C∏
c=1

H∏
i=1

W∏
j=1

N (wncij | zncµncij, σ2ncij), z = NF (z0)

Marginal approximate posterior that should be reused as a prior q(w |φ) is
intractable [3]

We derive a new variational lower bound and optimize the joint
approximate posterior q(w, z |φ) instead

L = Eq(w,z |φt)log p(Dt |w)−DKL(q(w, z |φt) || q(w, z |φt−1))

Discussion

+ expressive family

+ captures multi-modality

− many parameters

− slow training

Experiments: Incremental Learning on MNIST and CIFAR-10
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(a) Results on MNIST
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Incremental Learning CIFAR-10, 3Conv3F
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(b) Results on CIFAR-10

Figure: Incremental learning experiments without pretraining

Fine-tuning performs poorly on incremental learning task

Fully Factorized approximation was sufficient on these datasets

We had to downscale the KL Term for CIFAR-10 task to get good
performance

Experiments: Incremental Learning with Pretraining
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Figure: Incremental learning experiments
with pretraining

Pretraining was done on randomly selected
5 classes. Incremental learning was per-
formed on the rest ones using 3Conv3FC
architecture

Fine-tuning does not benefit from
pretraining

Pretraining helps Bayesian models

Laplace approximation works well
without grid search for σ2

Discussion

Bayesian framework provides intuitive tools to perform incremental
learning procedure. Variational inference is required in most cases.

It is possible to use pretrained models in Bayesian inference improving final
quality. Laplace approximation is a reasonable way to choose a prior using
old data and pretrained weights.

Additional tricks (KL rescaling) are needed on larger problems.
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